
2024/05/30 18:18 1/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

bash(1) bash(1)

NAME

 bash - GNU Bourne-Again SHell

SYNOPSIS

 bash [options] [file]

COPYRIGHT

 Bash is Copyright (C) 1989-2005 by the Free Software Foundation, Inc.

DESCRIPTION

 Bash is an sh-compatible command language interpreter that executes
 commands read from the standard input or from a file. Bash also incor-
 porates useful features from the Korn and C shells (ksh and csh).

 Bash is intended to be a conformant implementation of the Shell and
 Utilities portion of the IEEE POSIX specification (IEEE Standard
 1003.1). Bash can be configured to be POSIX-conformant by default.

OPTIONS

 In addition to the single-character shell options documented in the
 description of the set builtin command, bash interprets the following
 options when it is invoked:

c string If the -c option is present, then commands are read from1.

string. If there are arguments after the string, they are

 assigned to the positional parameters, starting with $0.
 -i If the -i option is present, the shell is interactive.
 -l Make bash act as if it had been invoked as a login shell (see
 INVOCATION below).
 -r If the -r option is present, the shell becomes restricted
 (see RESTRICTED SHELL below).
 -s If the -s option is present, or if no arguments remain after
 option processing, then commands are read from the standard
 input. This option allows the positional parameters to be
 set when invoking an interactive shell.
 -D A list of all double-quoted strings preceded by $ is printed
 on the standard output. These are the strings that are sub-
 ject to language translation when the current locale is not C
 or POSIX. This implies the -n option; no commands will be
 executed.
 [-+]O [shopt_option]
 shopt_option is one of the shell options accepted by the

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 shopt builtin (see SHELL BUILTIN COMMANDS below). If
 shopt_option is present, -O sets the value of that option; +O
 unsets it. If shopt_option is not supplied, the names and
 values of the shell options accepted by shopt are printed on
 the standard output. If the invocation option is +O, the
 output is displayed in a format that may be reused as input.
 -- A -- signals the end of options and disables further option
 processing. Any arguments after the -- are treated as file-
 names and arguments. An argument of - is equivalent to --.

 Bash also interprets a number of multi-character options. These
 options must appear on the command line before the single-character
 options to be recognized.

-debugger1.

Arrange for the debugger profile to be executed before the shell

 starts. Turns on extended debugging mode (see the description
 of the extdebug option to the shopt builtin below) and shell
 function tracing (see the description of the -o functrace option
 to the set builtin below).
 --dump-po-strings
 Equivalent to -D, but the output is in the GNU gettext po (por-
 table object) file format.
 --dump-strings
 Equivalent to -D.
 --help Display a usage message on standard output and exit success-
 fully.
 --init-file file
 --rcfile file
 Execute commands from file instead of the standard personal ini-
 tialization file ~/.bashrc if the shell is interactive (see
 INVOCATION below).

-login1.

Equivalent to -l.

-noediting1.

Do not use the GNU readline library to read command lines when

 the shell is interactive.

-noprofile1.

Do not read either the system-wide startup file /etc/profile or

 any of the personal initialization files ~/.bash_profile,
 ~/.bash_login, or ~/.profile. By default, bash reads these
 files when it is invoked as a login shell (see INVOCATION

2024/05/30 18:18 3/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 below).

-norc Do not read and execute the personal initialization file1.

~/.bashrc if the shell is interactive. This option is on by

 default if the shell is invoked as sh.

-posix1.

Change the behavior of bash where the default operation differs

 from the POSIX standard to match the standard (posix mode).

-restricted1.

The shell becomes restricted (see RESTRICTED SHELL below).

-verbose1.

Equivalent to -v.

-version1.

Show version information for this instance of bash on the stan-

 dard output and exit successfully.

ARGUMENTS

 If arguments remain after option processing, and neither the -c nor the
 -s option has been supplied, the first argument is assumed to be the
 name of a file containing shell commands. If bash is invoked in this
 fashion, $0 is set to the name of the file, and the positional parame-
 ters are set to the remaining arguments. Bash reads and executes com-
 mands from this file, then exits. Bash's exit status is the exit sta-
 tus of the last command executed in the script. If no commands are
 executed, the exit status is 0. An attempt is first made to open the
 file in the current directory, and, if no file is found, then the shell
 searches the directories in PATH for the script.

INVOCATION

 A login shell is one whose first character of argument zero is a -, or
 one started with the --login option.

 An interactive shell is one started without non-option arguments and
 without the -c option whose standard input and error are both connected
 to terminals (as determined by isatty(3)), or one started with the -i
 option. PS1 is set and $- includes i if bash is interactive, allowing
 a shell script or a startup file to test this state.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 The following paragraphs describe how bash executes its startup files.
 If any of the files exist but cannot be read, bash reports an error.
 Tildes are expanded in file names as described below under Tilde Expan-
 sion in the EXPANSION section.

 When bash is invoked as an interactive login shell, or as a non-inter-
 active shell with the --login option, it first reads and executes com-
 mands from the file /etc/profile, if that file exists. After reading
 that file, it looks for ~/.bash_profile, ~/.bash_login, and ~/.profile,
 in that order, and reads and executes commands from the first one that
 exists and is readable. The --noprofile option may be used when the
 shell is started to inhibit this behavior.

 When a login shell exits, bash reads and executes commands from the
 file ~/.bash_logout, if it exists.

 When an interactive shell that is not a login shell is started, bash
 reads and executes commands from ~/.bashrc, if that file exists. This
 may be inhibited by using the --norc option. The --rcfile file option
 will force bash to read and execute commands from file instead of
 ~/.bashrc.

 When bash is started non-interactively, to run a shell script, for
 example, it looks for the variable BASH_ENV in the environment, expands
 its value if it appears there, and uses the expanded value as the name
 of a file to read and execute. Bash behaves as if the following com-
 mand were executed:
 if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi
 but the value of the PATH variable is not used to search for the file
 name.

 If bash is invoked with the name sh, it tries to mimic the startup
 behavior of historical versions of sh as closely as possible, while
 conforming to the POSIX standard as well. When invoked as an interac-
 tive login shell, or a non-interactive shell with the --login option,
 it first attempts to read and execute commands from /etc/profile and
 ~/.profile, in that order. The --noprofile option may be used to
 inhibit this behavior. When invoked as an interactive shell with the
 name sh, bash looks for the variable ENV, expands its value if it is
 defined, and uses the expanded value as the name of a file to read and
 execute. Since a shell invoked as sh does not attempt to read and exe-
 cute commands from any other startup files, the --rcfile option has no
 effect. A non-interactive shell invoked with the name sh does not
 attempt to read any other startup files. When invoked as sh, bash
 enters posix mode after the startup files are read.

 When bash is started in posix mode, as with the --posix command line
 option, it follows the POSIX standard for startup files. In this mode,
 interactive shells expand the ENV variable and commands are read and
 executed from the file whose name is the expanded value. No other

2024/05/30 18:18 5/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 startup files are read.

 Bash attempts to determine when it is being run by the remote shell
 daemon, usually rshd. If bash determines it is being run by rshd, it
 reads and executes commands from ~/.bashrc, if that file exists and is
 readable. It will not do this if invoked as sh. The --norc option may
 be used to inhibit this behavior, and the --rcfile option may be used
 to force another file to be read, but rshd does not generally invoke
 the shell with those options or allow them to be specified.

 If the shell is started with the effective user (group) id not equal to
 the real user (group) id, and the -p option is not supplied, no startup
 files are read, shell functions are not inherited from the environment,
 the SHELLOPTS variable, if it appears in the environment, is ignored,
 and the effective user id is set to the real user id. If the -p option
 is supplied at invocation, the startup behavior is the same, but the
 effective user id is not reset.

DEFINITIONS

 The following definitions are used throughout the rest of this docu-
 ment.
 blank A space or tab.
 word A sequence of characters considered as a single unit by the
 shell. Also known as a token.
 name A word consisting only of alphanumeric characters and under-
 scores, and beginning with an alphabetic character or an under-
 score. Also referred to as an identifier.
 metacharacter
 A character that, when unquoted, separates words. One of the
 following:
 | & ; () < > space tab
 control operator
 A token that performs a control function. It is one of the fol-
 lowing symbols:
 || & && ; ;; () | <newline>

RESERVED WORDS

 Reserved words are words that have a special meaning to the shell. The
 following words are recognized as reserved when unquoted and either the
 first word of a simple command (see SHELL GRAMMAR below) or the third
 word of a case or for command:

 ! case do done elif else esac fi for function if in select then until
 while { } time [[]]

SHELL GRAMMAR

 Simple Commands

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 A simple command is a sequence of optional variable assignments fol-
 lowed by blank-separated words and redirections, and terminated by a
 control operator. The first word specifies the command to be executed,
 and is passed as argument zero. The remaining words are passed as
 arguments to the invoked command.

 The return value of a simple command is its exit status, or 128+n if
 the command is terminated by signal n.

 Pipelines
 A pipeline is a sequence of one or more commands separated by the char-
 acter |. The format for a pipeline is:

 [time [-p]] [!] command [| command2 ...]

 The standard output of command is connected via a pipe to the standard
 input of command2. This connection is performed before any redirec-
 tions specified by the command (see REDIRECTION below).

 The return status of a pipeline is the exit status of the last command,
 unless the pipefail option is enabled. If pipefail is enabled, the
 pipeline's return status is the value of the last (rightmost) command
 to exit with a non-zero status, or zero if all commands exit success-
 fully. If the reserved word ! precedes a pipeline, the exit status of
 that pipeline is the logical negation of the exit status as described
 above. The shell waits for all commands in the pipeline to terminate
 before returning a value.

 If the time reserved word precedes a pipeline, the elapsed as well as
 user and system time consumed by its execution are reported when the
 pipeline terminates. The -p option changes the output format to that
 specified by POSIX. The TIMEFORMAT variable may be set to a format
 string that specifies how the timing information should be displayed;
 see the description of TIMEFORMAT under Shell Variables below.

 Each command in a pipeline is executed as a separate process (i.e., in
 a subshell).

 Lists
 A list is a sequence of one or more pipelines separated by one of the
 operators ;, &, &&, or ||, and optionally terminated by one of ;, &, or
 <newline>.

 Of these list operators, && and || have equal precedence, followed by ;
 and &, which have equal precedence.

 A sequence of one or more newlines may appear in a list instead of a
 semicolon to delimit commands.

 If a command is terminated by the control operator &, the shell exe-

2024/05/30 18:18 7/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 cutes the command in the background in a subshell. The shell does not
 wait for the command to finish, and the return status is 0. Commands
 separated by a ; are executed sequentially; the shell waits for each
 command to terminate in turn. The return status is the exit status of
 the last command executed.

 The control operators && and || denote AND lists and OR lists, respec-
 tively. An AND list has the form

 command1 && command2

 command2 is executed if, and only if, command1 returns an exit status
 of zero.

 An OR list has the form

 command1 || command2

 command2 is executed if and only if command1 returns a non-zero exit
 status. The return status of AND and OR lists is the exit status of
 the last command executed in the list.

 Compound Commands
 A compound command is one of the following:

 (list) list is executed in a subshell environment (see COMMAND EXECU-
 TION ENVIRONMENT below). Variable assignments and builtin com-
 mands that affect the shell's environment do not remain in
 effect after the command completes. The return status is the
 exit status of list.

 { list; }
 list is simply executed in the current shell environment. list
 must be terminated with a newline or semicolon. This is known
 as a group command. The return status is the exit status of
 list. Note that unlike the metacharacters (and), { and } are
 reserved words and must occur where a reserved word is permitted
 to be recognized. Since they do not cause a word break, they
 must be separated from list by whitespace.

 ((expression))
 The expression is evaluated according to the rules described
 below under ARITHMETIC EVALUATION. If the value of the expres-
 sion is non-zero, the return status is 0; otherwise the return
 status is 1. This is exactly equivalent to let "expression".

 [[expression]]
 Return a status of 0 or 1 depending on the evaluation of the
 conditional expression expression. Expressions are composed of
 the primaries described below under CONDITIONAL EXPRESSIONS.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 Word splitting and pathname expansion are not performed on the
 words between the [[and]]; tilde expansion, parameter and
 variable expansion, arithmetic expansion, command substitution,
 process substitution, and quote removal are performed. Condi-
 tional operators such as -f must be unquoted to be recognized as
 primaries.

 When the == and != operators are used, the string to the right
 of the operator is considered a pattern and matched according to
 the rules described below under Pattern Matching. If the shell
 option nocasematch is enabled, the match is performed without
 regard to the case of alphabetic characters. The return value
 is 0 if the string matches (==) or does not match (!=) the pat-
 tern, and 1 otherwise. Any part of the pattern may be quoted to
 force it to be matched as a string.

 An additional binary operator, =~, is available, with the same
 precedence as == and !=. When it is used, the string to the
 right of the operator is considered an extended regular expres-
 sion and matched accordingly (as in regex(3)). The return value
 is 0 if the string matches the pattern, and 1 otherwise. If the
 regular expression is syntactically incorrect, the conditional
 expression's return value is 2. If the shell option nocasematch
 is enabled, the match is performed without regard to the case of
 alphabetic characters. Substrings matched by parenthesized
 subexpressions within the regular expression are saved in the
 array variable BASH_REMATCH. The element of BASH_REMATCH with
 index 0 is the portion of the string matching the entire regular
 expression. The element of BASH_REMATCH with index n is the
 portion of the string matching the nth parenthesized subexpres-
 sion.

 Expressions may be combined using the following operators,
 listed in decreasing order of precedence:

 (expression)
 Returns the value of expression. This may be used to
 override the normal precedence of operators.
 ! expression
 True if expression is false.
 expression1 && expression2
 True if both expression1 and expression2 are true.
 expression1 || expression2
 True if either expression1 or expression2 is true.

 The && and || operators do not evaluate expression2 if the value
 of expression1 is sufficient to determine the return value of
 the entire conditional expression.

 for name [in word] ; do list ; done

2024/05/30 18:18 9/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 The list of words following in is expanded, generating a list of
 items. The variable name is set to each element of this list in
 turn, and list is executed each time. If the in word is omit-
 ted, the for command executes list once for each positional
 parameter that is set (see PARAMETERS below). The return status
 is the exit status of the last command that executes. If the
 expansion of the items following in results in an empty list, no
 commands are executed, and the return status is 0.

 for ((expr1 ; expr2 ; expr3)) ; do list ; done
 First, the arithmetic expression expr1 is evaluated according to
 the rules described below under ARITHMETIC EVALUATION. The
 arithmetic expression expr2 is then evaluated repeatedly until
 it evaluates to zero. Each time expr2 evaluates to a non-zero
 value, list is executed and the arithmetic expression expr3 is
 evaluated. If any expression is omitted, it behaves as if it
 evaluates to 1. The return value is the exit status of the last
 command in list that is executed, or false if any of the expres-
 sions is invalid.

 select name [in word] ; do list ; done
 The list of words following in is expanded, generating a list of
 items. The set of expanded words is printed on the standard
 error, each preceded by a number. If the in word is omitted,
 the positional parameters are printed (see PARAMETERS below).
 The PS3 prompt is then displayed and a line read from the stan-
 dard input. If the line consists of a number corresponding to
 one of the displayed words, then the value of name is set to
 that word. If the line is empty, the words and prompt are dis-
 played again. If EOF is read, the command completes. Any other
 value read causes name to be set to null. The line read is
 saved in the variable REPLY. The list is executed after each
 selection until a break command is executed. The exit status of
 select is the exit status of the last command executed in list,
 or zero if no commands were executed.

 case word in [[(] pattern [| pattern] ...) list ;;] ... esac
 A case command first expands word, and tries to match it against
 each pattern in turn, using the same matching rules as for path-
 name expansion (see Pathname Expansion below). The word is
 expanded using tilde expansion, parameter and variable expan-
 sion, arithmetic substitution, command substitution, process
 substitution and quote removal. Each pattern examined is
 expanded using tilde expansion, parameter and variable expan-
 sion, arithmetic substitution, command substitution, and process
 substitution. If the shell option nocasematch is enabled, the
 match is performed without regard to the case of alphabetic
 characters. When a match is found, the corresponding list is
 executed. After the first match, no subsequent matches are
 attempted. The exit status is zero if no pattern matches. Oth-
 erwise, it is the exit status of the last command executed in

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 list.

 if list; then list; [elif list; then list;] ... [else list;] fi
 The if list is executed. If its exit status is zero, the then
 list is executed. Otherwise, each elif list is executed in
 turn, and if its exit status is zero, the corresponding then
 list is executed and the command completes. Otherwise, the else
 list is executed, if present. The exit status is the exit sta-
 tus of the last command executed, or zero if no condition tested
 true.

 while list; do list; done
 until list; do list; done
 The while command continuously executes the do list as long as
 the last command in list returns an exit status of zero. The
 until command is identical to the while command, except that the
 test is negated; the do list is executed as long as the last
 command in list returns a non-zero exit status. The exit status
 of the while and until commands is the exit status of the last
 do list command executed, or zero if none was executed.

 Shell Function Definitions
 A shell function is an object that is called like a simple command and
 executes a compound command with a new set of positional parameters.
 Shell functions are declared as follows:

 [function] name () compound-command [redirection]
 This defines a function named name. The reserved word function
 is optional. If the function reserved word is supplied, the
 parentheses are optional. The body of the function is the com-
 pound command compound-command (see Compound Commands above).
 That command is usually a list of commands between { and }, but
 may be any command listed under Compound Commands above. com-
 pound-command is executed whenever name is specified as the name
 of a simple command. Any redirections (see REDIRECTION below)
 specified when a function is defined are performed when the
 function is executed. The exit status of a function definition
 is zero unless a syntax error occurs or a readonly function with
 the same name already exists. When executed, the exit status of
 a function is the exit status of the last command executed in
 the body. (See FUNCTIONS below.)

COMMENTS

 In a non-interactive shell, or an interactive shell in which the inter-
 active_comments option to the shopt builtin is enabled (see SHELL
 BUILTIN COMMANDS below), a word beginning with # causes that word and
 all remaining characters on that line to be ignored. An interactive
 shell without the interactive_comments option enabled does not allow
 comments. The interactive_comments option is on by default in interac-

2024/05/30 18:18 11/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 tive shells.

QUOTING

 Quoting is used to remove the special meaning of certain characters or
 words to the shell. Quoting can be used to disable special treatment
 for special characters, to prevent reserved words from being recognized
 as such, and to prevent parameter expansion.

 Each of the metacharacters listed above under DEFINITIONS has special
 meaning to the shell and must be quoted if it is to represent itself.

 When the command history expansion facilities are being used (see HIS-
 TORY EXPANSION below), the history expansion character, usually !, must
 be quoted to prevent history expansion.

 There are three quoting mechanisms: the escape character, single
 quotes, and double quotes.

 A non-quoted backslash (\) is the escape character. It preserves the
 literal value of the next character that follows, with the exception of
 <newline>. If a \<newline> pair appears, and the backslash is not
 itself quoted, the \<newline> is treated as a line continuation (that
 is, it is removed from the input stream and effectively ignored).

 Enclosing characters in single quotes preserves the literal value of
 each character within the quotes. A single quote may not occur between
 single quotes, even when preceded by a backslash.

 Enclosing characters in double quotes preserves the literal value of
 all characters within the quotes, with the exception of $, `, \, and,
 when history expansion is enabled, !. The characters $ and ` retain
 their special meaning within double quotes. The backslash retains its
 special meaning only when followed by one of the following characters:
 $, `, ", \, or <newline>. A double quote may be quoted within double
 quotes by preceding it with a backslash. If enabled, history expansion
 will be performed unless an ! appearing in double quotes is escaped
 using a backslash. The backslash preceding the ! is not removed.

 The special parameters * and @ have special meaning when in double
 quotes (see PARAMETERS below).

 Words of the form $'string' are treated specially. The word expands to
 string, with backslash-escaped characters replaced as specified by the
 ANSI C standard. Backslash escape sequences, if present, are decoded
 as follows:
 \a alert (bell)
 \b backspace
 \e an escape character
 \f form feed

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 \n new line
 \r carriage return
 \t horizontal tab
 \v vertical tab
 \\ backslash
 \' single quote
 \nnn the eight-bit character whose value is the octal value
 nnn (one to three digits)
 \xHH the eight-bit character whose value is the hexadecimal
 value HH (one or two hex digits)
 \cx a control-x character

 The expanded result is single-quoted, as if the dollar sign had not
 been present.

 A double-quoted string preceded by a dollar sign ($) will cause the
 string to be translated according to the current locale. If the cur-
 rent locale is C or POSIX, the dollar sign is ignored. If the string
 is translated and replaced, the replacement is double-quoted.

PARAMETERS

 A parameter is an entity that stores values. It can be a name, a num-
 ber, or one of the special characters listed below under Special Param-
 eters. A variable is a parameter denoted by a name. A variable has a
 value and zero or more attributes. Attributes are assigned using the
 declare builtin command (see declare below in SHELL BUILTIN COMMANDS).

 A parameter is set if it has been assigned a value. The null string is
 a valid value. Once a variable is set, it may be unset only by using
 the unset builtin command (see SHELL BUILTIN COMMANDS below).

 A variable may be assigned to by a statement of the form

 name=[value]

 If value is not given, the variable is assigned the null string. All
 values undergo tilde expansion, parameter and variable expansion, com-
 mand substitution, arithmetic expansion, and quote removal (see EXPAN-
 SION below). If the variable has its integer attribute set, then value
 is evaluated as an arithmetic expression even if the $((...)) expansion
 is not used (see Arithmetic Expansion below). Word splitting is not
 performed, with the exception of "$@" as explained below under Special
 Parameters. Pathname expansion is not performed. Assignment state-
 ments may also appear as arguments to the alias, declare, typeset,
 export, readonly, and local builtin commands.

 In the context where an assignment statement is assigning a value to a
 shell variable or array index, the += operator can be used to append to
 or add to the variable's previous value. When += is applied to a vari-

2024/05/30 18:18 13/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 able for which the integer attribute has been set, value is evaluated
 as an arithmetic expression and added to the variable's current value,
 which is also evaluated. When += is applied to an array variable using
 compound assignment (see Arrays below), the variable's value is not
 unset (as it is when using =), and new values are appended to the array
 beginning at one greater than the array's maximum index. When applied
 to a string-valued variable, value is expanded and appended to the
 variable's value.

 Positional Parameters
 A positional parameter is a parameter denoted by one or more digits,
 other than the single digit 0. Positional parameters are assigned from
 the shell's arguments when it is invoked, and may be reassigned using
 the set builtin command. Positional parameters may not be assigned to
 with assignment statements. The positional parameters are temporarily
 replaced when a shell function is executed (see FUNCTIONS below).

 When a positional parameter consisting of more than a single digit is
 expanded, it must be enclosed in braces (see EXPANSION below).

 Special Parameters
 The shell treats several parameters specially. These parameters may
 only be referenced; assignment to them is not allowed.
 * Expands to the positional parameters, starting from one. When
 the expansion occurs within double quotes, it expands to a sin-
 gle word with the value of each parameter separated by the first
 character of the IFS special variable. That is, "$*" is equiva-
 lent to "$1c$2c...", where c is the first character of the value
 of the IFS variable. If IFS is unset, the parameters are sepa-
 rated by spaces. If IFS is null, the parameters are joined
 without intervening separators.
 @ Expands to the positional parameters, starting from one. When
 the expansion occurs within double quotes, each parameter
 expands to a separate word. That is, "$@" is equivalent to "$1"
 "$2" ... If the double-quoted expansion occurs within a word,
 the expansion of the first parameter is joined with the begin-
 ning part of the original word, and the expansion of the last
 parameter is joined with the last part of the original word.
 When there are no positional parameters, "$@" and $@ expand to
 nothing (i.e., they are removed).
 # Expands to the number of positional parameters in decimal.
 ? Expands to the status of the most recently executed foreground
 pipeline.
 - Expands to the current option flags as specified upon invoca-
 tion, by the set builtin command, or those set by the shell
 itself (such as the -i option).
 $ Expands to the process ID of the shell. In a () subshell, it
 expands to the process ID of the current shell, not the sub-
 shell.
 ! Expands to the process ID of the most recently executed back-
 ground (asynchronous) command.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 0 Expands to the name of the shell or shell script. This is set
 at shell initialization. If bash is invoked with a file of com-
 mands, $0 is set to the name of that file. If bash is started
 with the -c option, then $0 is set to the first argument after
 the string to be executed, if one is present. Otherwise, it is
 set to the file name used to invoke bash, as given by argument
 zero.
 _ At shell startup, set to the absolute pathname used to invoke
 the shell or shell script being executed as passed in the envi-
 ronment or argument list. Subsequently, expands to the last
 argument to the previous command, after expansion. Also set to
 the full pathname used to invoke each command executed and
 placed in the environment exported to that command. When check-
 ing mail, this parameter holds the name of the mail file cur-
 rently being checked.

 Shell Variables
 The following variables are set by the shell:

 BASH Expands to the full file name used to invoke this instance of
 bash.
 BASH_ARGC
 An array variable whose values are the number of parameters in
 each frame of the current bash execution call stack. The number
 of parameters to the current subroutine (shell function or
 script executed with . or source) is at the top of the stack.
 When a subroutine is executed, the number of parameters passed
 is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in
 extended debugging mode (see the description of the extdebug
 option to the shopt builtin below)
 BASH_ARGV
 An array variable containing all of the parameters in the cur-
 rent bash execution call stack. The final parameter of the last
 subroutine call is at the top of the stack; the first parameter
 of the initial call is at the bottom. When a subroutine is exe-
 cuted, the parameters supplied are pushed onto BASH_ARGV. The
 shell sets BASH_ARGV only when in extended debugging mode (see
 the description of the extdebug option to the shopt builtin
 below)
 BASH_COMMAND
 The command currently being executed or about to be executed,
 unless the shell is executing a command as the result of a trap,
 in which case it is the command executing at the time of the
 trap.
 BASH_EXECUTION_STRING
 The command argument to the -c invocation option.
 BASH_LINENO
 An array variable whose members are the line numbers in source
 files corresponding to each member of FUNCNAME.
 ${BASH_LINENO[$i]} is the line number in the source file where
 ${FUNCNAME[$ifP]} was called. The corresponding source file

2024/05/30 18:18 15/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 name is ${BASH_SOURCE[$i]}. Use LINENO to obtain the current
 line number.
 BASH_REMATCH
 An array variable whose members are assigned by the =~ binary
 operator to the [[conditional command. The element with index
 0 is the portion of the string matching the entire regular
 expression. The element with index n is the portion of the
 string matching the nth parenthesized subexpression. This vari-
 able is read-only.
 BASH_SOURCE
 An array variable whose members are the source filenames corre-
 sponding to the elements in the FUNCNAME array variable.
 BASH_SUBSHELL
 Incremented by one each time a subshell or subshell environment
 is spawned. The initial value is 0.
 BASH_VERSINFO
 A readonly array variable whose members hold version information
 for this instance of bash. The values assigned to the array
 members are as follows:
 BASH_VERSINFO[0] The major version number (the release).
 BASH_VERSINFO[1] The minor version number (the version).
 BASH_VERSINFO[2] The patch level.
 BASH_VERSINFO[3] The build version.
 BASH_VERSINFO[4] The release status (e.g., beta1).
 BASH_VERSINFO[5] The value of MACHTYPE.

 BASH_VERSION
 Expands to a string describing the version of this instance of
 bash.

 COMP_CWORD
 An index into ${COMP_WORDS} of the word containing the current
 cursor position. This variable is available only in shell func-
 tions invoked by the programmable completion facilities (see
 Programmable Completion below).

 COMP_LINE
 The current command line. This variable is available only in
 shell functions and external commands invoked by the pro-
 grammable completion facilities (see Programmable Completion
 below).

 COMP_POINT
 The index of the current cursor position relative to the begin-
 ning of the current command. If the current cursor position is
 at the end of the current command, the value of this variable is
 equal to ${#COMP_LINE}. This variable is available only in
 shell functions and external commands invoked by the pro-
 grammable completion facilities (see Programmable Completion
 below).

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 COMP_WORDBREAKS
 The set of characters that the Readline library treats as word
 separators when performing word completion. If COMP_WORDBREAKS
 is unset, it loses its special properties, even if it is subse-
 quently reset.

 COMP_WORDS
 An array variable (see Arrays below) consisting of the individ-
 ual words in the current command line. The words are split on
 shell metacharacters as the shell parser would separate them.
 This variable is available only in shell functions invoked by
 the programmable completion facilities (see Programmable Comple-
 tion below).

 DIRSTACK
 An array variable (see Arrays below) containing the current con-
 tents of the directory stack. Directories appear in the stack
 in the order they are displayed by the dirs builtin. Assigning
 to members of this array variable may be used to modify directo-
 ries already in the stack, but the pushd and popd builtins must
 be used to add and remove directories. Assignment to this vari-
 able will not change the current directory. If DIRSTACK is
 unset, it loses its special properties, even if it is subse-
 quently reset.

 EUID Expands to the effective user ID of the current user, initial-
 ized at shell startup. This variable is readonly.

 FUNCNAME
 An array variable containing the names of all shell functions
 currently in the execution call stack. The element with index 0
 is the name of any currently-executing shell function. The bot-
 tom-most element is "main". This variable exists only when a
 shell function is executing. Assignments to FUNCNAME have no
 effect and return an error status. If FUNCNAME is unset, it
 loses its special properties, even if it is subsequently reset.

 GROUPS An array variable containing the list of groups of which the
 current user is a member. Assignments to GROUPS have no effect
 and return an error status. If GROUPS is unset, it loses its
 special properties, even if it is subsequently reset.

 HISTCMD
 The history number, or index in the history list, of the current
 command. If HISTCMD is unset, it loses its special properties,
 even if it is subsequently reset.

 HOSTNAME
 Automatically set to the name of the current host.

2024/05/30 18:18 17/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 HOSTTYPE
 Automatically set to a string that uniquely describes the type
 of machine on which bash is executing. The default is system-
 dependent.

 LINENO Each time this parameter is referenced, the shell substitutes a
 decimal number representing the current sequential line number
 (starting with 1) within a script or function. When not in a
 script or function, the value substituted is not guaranteed to
 be meaningful. If LINENO is unset, it loses its special proper-
 ties, even if it is subsequently reset.

 MACHTYPE
 Automatically set to a string that fully describes the system
 type on which bash is executing, in the standard GNU cpu-com-
 pany-system format. The default is system-dependent.

 OLDPWD The previous working directory as set by the cd command.

 OPTARG The value of the last option argument processed by the getopts
 builtin command (see SHELL BUILTIN COMMANDS below).

 OPTIND The index of the next argument to be processed by the getopts
 builtin command (see SHELL BUILTIN COMMANDS below).

 OSTYPE Automatically set to a string that describes the operating sys-
 tem on which bash is executing. The default is system-depen-
 dent.

 PIPESTATUS
 An array variable (see Arrays below) containing a list of exit
 status values from the processes in the most-recently-executed
 foreground pipeline (which may contain only a single command).

 PPID The process ID of the shell's parent. This variable is read-
 only.

 PWD The current working directory as set by the cd command.

 RANDOM Each time this parameter is referenced, a random integer between
 0 and 32767 is generated. The sequence of random numbers may be
 initialized by assigning a value to RANDOM. If RANDOM is unset,
 it loses its special properties, even if it is subsequently
 reset.

 REPLY Set to the line of input read by the read builtin command when
 no arguments are supplied.

 SECONDS
 Each time this parameter is referenced, the number of seconds

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 since shell invocation is returned. If a value is assigned to
 SECONDS, the value returned upon subsequent references is the
 number of seconds since the assignment plus the value assigned.
 If SECONDS is unset, it loses its special properties, even if it
 is subsequently reset.

 SHELLOPTS
 A colon-separated list of enabled shell options. Each word in
 the list is a valid argument for the -o option to the set
 builtin command (see SHELL BUILTIN COMMANDS below). The options
 appearing in SHELLOPTS are those reported as on by set -o. If
 this variable is in the environment when bash starts up, each
 shell option in the list will be enabled before reading any
 startup files. This variable is read-only.

 SHLVL Incremented by one each time an instance of bash is started.

 UID Expands to the user ID of the current user, initialized at shell
 startup. This variable is readonly.

 The following variables are used by the shell. In some cases, bash
 assigns a default value to a variable; these cases are noted below.

 BASH_ENV
 If this parameter is set when bash is executing a shell script,
 its value is interpreted as a filename containing commands to
 initialize the shell, as in ~/.bashrc. The value of BASH_ENV is
 subjected to parameter expansion, command substitution, and
 arithmetic expansion before being interpreted as a file name.
 PATH is not used to search for the resultant file name.
 CDPATH The search path for the cd command. This is a colon-separated
 list of directories in which the shell looks for destination
 directories specified by the cd command. A sample value is
 ".:~:/usr".
 COLUMNS
 Used by the select builtin command to determine the terminal
 width when printing selection lists. Automatically set upon
 receipt of a SIGWINCH.
 COMPREPLY
 An array variable from which bash reads the possible completions
 generated by a shell function invoked by the programmable com-
 pletion facility (see Programmable Completion below).
 EMACS If bash finds this variable in the environment when the shell
 starts with value "t", it assumes that the shell is running in
 an emacs shell buffer and disables line editing.
 FCEDIT The default editor for the fc builtin command.
 FIGNORE
 A colon-separated list of suffixes to ignore when performing
 filename completion (see READLINE below). A filename whose suf-
 fix matches one of the entries in FIGNORE is excluded from the
 list of matched filenames. A sample value is ".o:~".

2024/05/30 18:18 19/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 GLOBIGNORE
 A colon-separated list of patterns defining the set of filenames
 to be ignored by pathname expansion. If a filename matched by a
 pathname expansion pattern also matches one of the patterns in
 GLOBIGNORE, it is removed from the list of matches.
 HISTCONTROL
 A colon-separated list of values controlling how commands are
 saved on the history list. If the list of values includes
 ignorespace, lines which begin with a space character are not
 saved in the history list. A value of ignoredups causes lines
 matching the previous history entry to not be saved. A value of
 ignoreboth is shorthand for ignorespace and ignoredups. A value
 of erasedups causes all previous lines matching the current line
 to be removed from the history list before that line is saved.
 Any value not in the above list is ignored. If HISTCONTROL is
 unset, or does not include a valid value, all lines read by the
 shell parser are saved on the history list, subject to the value
 of HISTIGNORE. The second and subsequent lines of a multi-line
 compound command are not tested, and are added to the history
 regardless of the value of HISTCONTROL.
 HISTFILE
 The name of the file in which command history is saved (see HIS-
 TORY below). The default value is ~/.bash_history. If unset,
 the command history is not saved when an interactive shell
 exits.
 HISTFILESIZE
 The maximum number of lines contained in the history file. When
 this variable is assigned a value, the history file is trun-
 cated, if necessary, by removing the oldest entries, to contain
 no more than that number of lines. The default value is 500.
 The history file is also truncated to this size after writing it
 when an interactive shell exits.
 HISTIGNORE
 A colon-separated list of patterns used to decide which command
 lines should be saved on the history list. Each pattern is
 anchored at the beginning of the line and must match the com-
 plete line (no implicit `*' is appended). Each pattern is
 tested against the line after the checks specified by HISTCON-
 TROL are applied. In addition to the normal shell pattern
 matching characters, `&' matches the previous history line. `&'
 may be escaped using a backslash; the backslash is removed
 before attempting a match. The second and subsequent lines of a
 multi-line compound command are not tested, and are added to the
 history regardless of the value of HISTIGNORE.
 HISTSIZE
 The number of commands to remember in the command history (see
 HISTORY below). The default value is 500.
 HISTTIMEFORMAT
 If this variable is set and not null, its value is used as a
 format string for strftime(3) to print the time stamp associated
 with each history entry displayed by the history builtin. If

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 this variable is set, time stamps are written to the history
 file so they may be preserved across shell sessions.
 HOME The home directory of the current user; the default argument for
 the cd builtin command. The value of this variable is also used
 when performing tilde expansion.
 HOSTFILE
 Contains the name of a file in the same format as /etc/hosts
 that should be read when the shell needs to complete a hostname.
 The list of possible hostname completions may be changed while
 the shell is running; the next time hostname completion is
 attempted after the value is changed, bash adds the contents of
 the new file to the existing list. If HOSTFILE is set, but has
 no value, bash attempts to read /etc/hosts to obtain the list of
 possible hostname completions. When HOSTFILE is unset, the
 hostname list is cleared.
 IFS The Internal Field Separator that is used for word splitting
 after expansion and to split lines into words with the read
 builtin command. The default value is ``<space><tab><new-
 line>''.
 IGNOREEOF
 Controls the action of an interactive shell on receipt of an EOF
 character as the sole input. If set, the value is the number of
 consecutive EOF characters which must be typed as the first
 characters on an input line before bash exits. If the variable
 exists but does not have a numeric value, or has no value, the
 default value is 10. If it does not exist, EOF signifies the
 end of input to the shell.
 INPUTRC
 The filename for the readline startup file, overriding the
 default of ~/.inputrc (see READLINE below).
 LANG Used to determine the locale category for any category not
 specifically selected with a variable starting with LC_.
 LC_ALL This variable overrides the value of LANG and any other LC_
 variable specifying a locale category.
 LC_COLLATE
 This variable determines the collation order used when sorting
 the results of pathname expansion, and determines the behavior
 of range expressions, equivalence classes, and collating
 sequences within pathname expansion and pattern matching.
 LC_CTYPE
 This variable determines the interpretation of characters and
 the behavior of character classes within pathname expansion and
 pattern matching.
 LC_MESSAGES
 This variable determines the locale used to translate double-
 quoted strings preceded by a $.
 LC_NUMERIC
 This variable determines the locale category used for number
 formatting.
 LINES Used by the select builtin command to determine the column
 length for printing selection lists. Automatically set upon

2024/05/30 18:18 21/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 receipt of a SIGWINCH.
 MAIL If this parameter is set to a file name and the MAILPATH vari-
 able is not set, bash informs the user of the arrival of mail in
 the specified file.
 MAILCHECK
 Specifies how often (in seconds) bash checks for mail. The
 default is 60 seconds. When it is time to check for mail, the
 shell does so before displaying the primary prompt. If this
 variable is unset, or set to a value that is not a number
 greater than or equal to zero, the shell disables mail checking.
 MAILPATH
 A colon-separated list of file names to be checked for mail.
 The message to be printed when mail arrives in a particular file
 may be specified by separating the file name from the message
 with a `?'. When used in the text of the message, $_ expands to
 the name of the current mailfile. Example:
 MAILPATH='/var/mail/bfox?"You have mail":~/shell-mail?"$_ has
 mail!"'
 Bash supplies a default value for this variable, but the loca-
 tion of the user mail files that it uses is system dependent
 (e.g., /var/mail/$USER).
 OPTERR If set to the value 1, bash displays error messages generated by
 the getopts builtin command (see SHELL BUILTIN COMMANDS below).
 OPTERR is initialized to 1 each time the shell is invoked or a
 shell script is executed.
 PATH The search path for commands. It is a colon-separated list of
 directories in which the shell looks for commands (see COMMAND
 EXECUTION below). A zero-length (null) directory name in the
 value of PATH indicates the current directory. A null directory
 name may appear as two adjacent colons, or as an initial or
 trailing colon. The default path is system-dependent, and is
 set by the administrator who installs bash. A common value is
 ``/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin''.
 POSIXLY_CORRECT
 If this variable is in the environment when bash starts, the
 shell enters posix mode before reading the startup files, as if
 the --posix invocation option had been supplied. If it is set
 while the shell is running, bash enables posix mode, as if the
 command set -o posix had been executed.
 PROMPT_COMMAND
 If set, the value is executed as a command prior to issuing each
 primary prompt.
 PS1 The value of this parameter is expanded (see PROMPTING below)
 and used as the primary prompt string. The default value is
 ``\s-\v\$ ''.
 PS2 The value of this parameter is expanded as with PS1 and used as
 the secondary prompt string. The default is ``> ''.
 PS3 The value of this parameter is used as the prompt for the select
 command (see SHELL GRAMMAR above).
 PS4 The value of this parameter is expanded as with PS1 and the
 value is printed before each command bash displays during an

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 execution trace. The first character of PS4 is replicated mul-
 tiple times, as necessary, to indicate multiple levels of indi-
 rection. The default is ``+ ''.
 SHELL The full pathname to the shell is kept in this environment vari-
 able. If it is not set when the shell starts, bash assigns to
 it the full pathname of the current user's login shell.
 TIMEFORMAT
 The value of this parameter is used as a format string specify-
 ing how the timing information for pipelines prefixed with the
 time reserved word should be displayed. The % character intro-
 duces an escape sequence that is expanded to a time value or
 other information. The escape sequences and their meanings are
 as follows; the braces denote optional portions.
 %% A literal %.
 %[p][l]R The elapsed time in seconds.
 %[p][l]U The number of CPU seconds spent in user mode.
 %[p][l]S The number of CPU seconds spent in system mode.
 %P The CPU percentage, computed as (%U + %S) / %R.

 The optional p is a digit specifying the precision, the number
 of fractional digits after a decimal point. A value of 0 causes
 no decimal point or fraction to be output. At most three places
 after the decimal point may be specified; values of p greater
 than 3 are changed to 3. If p is not specified, the value 3 is
 used.

 The optional l specifies a longer format, including minutes, of
 the form MMmSS.FFs. The value of p determines whether or not
 the fraction is included.

 If this variable is not set, bash acts as if it had the value
 $'\nreal\t%3lR\nuser\t%3lU\nsys%3lS'. If the value is null, no
 timing information is displayed. A trailing newline is added
 when the format string is displayed.

 TMOUT If set to a value greater than zero, TMOUT is treated as the
 default timeout for the read builtin. The select command termi-
 nates if input does not arrive after TMOUT seconds when input is
 coming from a terminal. In an interactive shell, the value is
 interpreted as the number of seconds to wait for input after
 issuing the primary prompt. Bash terminates after waiting for
 that number of seconds if input does not arrive.

 TMPDIR If set, Bash uses its value as the name of a directory in which
 Bash creates temporary files for the shell's use.

 auto_resume
 This variable controls how the shell interacts with the user and
 job control. If this variable is set, single word simple com-
 mands without redirections are treated as candidates for resump-

2024/05/30 18:18 23/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 tion of an existing stopped job. There is no ambiguity allowed;
 if there is more than one job beginning with the string typed,
 the job most recently accessed is selected. The name of a
 stopped job, in this context, is the command line used to start
 it. If set to the value exact, the string supplied must match
 the name of a stopped job exactly; if set to substring, the
 string supplied needs to match a substring of the name of a
 stopped job. The substring value provides functionality analo-
 gous to the %? job identifier (see JOB CONTROL below). If set
 to any other value, the supplied string must be a prefix of a
 stopped job's name; this provides functionality analogous to the
 %string job identifier.

 histchars
 The two or three characters which control history expansion and
 tokenization (see HISTORY EXPANSION below). The first character
 is the history expansion character, the character which signals
 the start of a history expansion, normally `!'. The second
 character is the quick substitution character, which is used as
 shorthand for re-running the previous command entered, substi-
 tuting one string for another in the command. The default is
 `^'. The optional third character is the character which indi-
 cates that the remainder of the line is a comment when found as
 the first character of a word, normally `#'. The history com-
 ment character causes history substitution to be skipped for the
 remaining words on the line. It does not necessarily cause the
 shell parser to treat the rest of the line as a comment.

 Arrays
 Bash provides one-dimensional array variables. Any variable may be
 used as an array; the declare builtin will explicitly declare an array.
 There is no maximum limit on the size of an array, nor any requirement
 that members be indexed or assigned contiguously. Arrays are indexed
 using integers and are zero-based.

 An array is created automatically if any variable is assigned to using
 the syntax name[subscript]=value. The subscript is treated as an
 arithmetic expression that must evaluate to a number greater than or
 equal to zero. To explicitly declare an array, use declare -a name
 (see SHELL BUILTIN COMMANDS below). declare -a name[subscript] is also
 accepted; the subscript is ignored. Attributes may be specified for an
 array variable using the declare and readonly builtins. Each attribute
 applies to all members of an array.

 Arrays are assigned to using compound assignments of the form
 name=(value1 ... valuen), where each value is of the form [sub-
 script]=string. Only string is required. If the optional brackets and
 subscript are supplied, that index is assigned to; otherwise the index
 of the element assigned is the last index assigned to by the statement
 plus one. Indexing starts at zero. This syntax is also accepted by
 the declare builtin. Individual array elements may be assigned to

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 using the name[subscript]=value syntax introduced above.

 Any element of an array may be referenced using ${name[subscript]}.
 The braces are required to avoid conflicts with pathname expansion. If
 subscript is @ or *, the word expands to all members of name. These
 subscripts differ only when the word appears within double quotes. If
 the word is double-quoted, ${name[*]} expands to a single word with the
 value of each array member separated by the first character of the IFS
 special variable, and ${name[@]} expands each element of name to a sep-
 arate word. When there are no array members, ${name[@]} expands to
 nothing. If the double-quoted expansion occurs within a word, the
 expansion of the first parameter is joined with the beginning part of
 the original word, and the expansion of the last parameter is joined
 with the last part of the original word. This is analogous to the
 expansion of the special parameters * and @ (see Special Parameters
 above). ${#name[subscript]} expands to the length of ${name[sub-
 script]}. If subscript is * or @, the expansion is the number of ele-
 ments in the array. Referencing an array variable without a subscript
 is equivalent to referencing element zero.

 The unset builtin is used to destroy arrays. unset name[subscript]
 destroys the array element at index subscript. Care must be taken to
 avoid unwanted side effects caused by filename generation. unset name,
 where name is an array, or unset name[subscript], where subscript is *
 or @, removes the entire array.

 The declare, local, and readonly builtins each accept a -a option to
 specify an array. The read builtin accepts a -a option to assign a
 list of words read from the standard input to an array. The set and
 declare builtins display array values in a way that allows them to be
 reused as assignments.

EXPANSION

 Expansion is performed on the command line after it has been split into
 words. There are seven kinds of expansion performed: brace expansion,
 tilde expansion, parameter and variable expansion, command substitu-
 tion, arithmetic expansion, word splitting, and pathname expansion.

 The order of expansions is: brace expansion, tilde expansion, parame-
 ter, variable and arithmetic expansion and command substitution (done
 in a left-to-right fashion), word splitting, and pathname expansion.

 On systems that can support it, there is an additional expansion avail-
 able: process substitution.

 Only brace expansion, word splitting, and pathname expansion can change
 the number of words of the expansion; other expansions expand a single
 word to a single word. The only exceptions to this are the expansions
 of "$@" and "${name[@]}" as explained above (see PARAMETERS).

2024/05/30 18:18 25/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 Brace Expansion
 Brace expansion is a mechanism by which arbitrary strings may be gener-
 ated. This mechanism is similar to pathname expansion, but the file-
 names generated need not exist. Patterns to be brace expanded take the
 form of an optional preamble, followed by either a series of comma-sep-
 arated strings or a sequence expression between a pair of braces, fol-
 lowed by an optional postscript. The preamble is prefixed to each
 string contained within the braces, and the postscript is then appended
 to each resulting string, expanding left to right.

 Brace expansions may be nested. The results of each expanded string
 are not sorted; left to right order is preserved. For example,
 a{d,c,b}e expands into `ade ace abe'.

 A sequence expression takes the form {x..y}, where x and y are either
 integers or single characters. When integers are supplied, the expres-
 sion expands to each number between x and y, inclusive. When charac-
 ters are supplied, the expression expands to each character lexico-
 graphically between x and y, inclusive. Note that both x and y must be
 of the same type.

 Brace expansion is performed before any other expansions, and any char-
 acters special to other expansions are preserved in the result. It is
 strictly textual. Bash does not apply any syntactic interpretation to
 the context of the expansion or the text between the braces.

 A correctly-formed brace expansion must contain unquoted opening and
 closing braces, and at least one unquoted comma or a valid sequence
 expression. Any incorrectly formed brace expansion is left unchanged.
 A { or , may be quoted with a backslash to prevent its being considered
 part of a brace expression. To avoid conflicts with parameter expan-
 sion, the string ${ is not considered eligible for brace expansion.

 This construct is typically used as shorthand when the common prefix of
 the strings to be generated is longer than in the above example:

 mkdir /usr/local/src/bash/{old,new,dist,bugs}
 or
 chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

 Brace expansion introduces a slight incompatibility with historical
 versions of sh. sh does not treat opening or closing braces specially
 when they appear as part of a word, and preserves them in the output.
 Bash removes braces from words as a consequence of brace expansion.
 For example, a word entered to sh as file{1,2} appears identically in
 the output. The same word is output as file1 file2 after expansion by
 bash. If strict compatibility with sh is desired, start bash with the
 +B option or disable brace expansion with the +B option to the set com-
 mand (see SHELL BUILTIN COMMANDS below).

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 Tilde Expansion
 If a word begins with an unquoted tilde character (`~'), all of the
 characters preceding the first unquoted slash (or all characters, if
 there is no unquoted slash) are considered a tilde-prefix. If none of
 the characters in the tilde-prefix are quoted, the characters in the
 tilde-prefix following the tilde are treated as a possible login name.
 If this login name is the null string, the tilde is replaced with the
 value of the shell parameter HOME. If HOME is unset, the home direc-
 tory of the user executing the shell is substituted instead. Other-
 wise, the tilde-prefix is replaced with the home directory associated
 with the specified login name.

 If the tilde-prefix is a `~+', the value of the shell variable PWD
 replaces the tilde-prefix. If the tilde-prefix is a `~-', the value of
 the shell variable OLDPWD, if it is set, is substituted. If the char-
 acters following the tilde in the tilde-prefix consist of a number N,
 optionally prefixed by a `+' or a `-', the tilde-prefix is replaced
 with the corresponding element from the directory stack, as it would be
 displayed by the dirs builtin invoked with the tilde-prefix as an argu-
 ment. If the characters following the tilde in the tilde-prefix con-
 sist of a number without a leading `+' or `-', `+' is assumed.

 If the login name is invalid, or the tilde expansion fails, the word is
 unchanged.

 Each variable assignment is checked for unquoted tilde-prefixes immedi-
 ately following a : or the first =. In these cases, tilde expansion is
 also performed. Consequently, one may use file names with tildes in
 assignments to PATH, MAILPATH, and CDPATH, and the shell assigns the
 expanded value.

 Parameter Expansion
 The `$' character introduces parameter expansion, command substitution,
 or arithmetic expansion. The parameter name or symbol to be expanded
 may be enclosed in braces, which are optional but serve to protect the
 variable to be expanded from characters immediately following it which
 could be interpreted as part of the name.

 When braces are used, the matching ending brace is the first `}' not
 escaped by a backslash or within a quoted string, and not within an
 embedded arithmetic expansion, command substitution, or parameter
 expansion.

 ${parameter}
 The value of parameter is substituted. The braces are required
 when parameter is a positional parameter with more than one
 digit, or when parameter is followed by a character which is not
 to be interpreted as part of its name.

 If the first character of parameter is an exclamation point, a level of

2024/05/30 18:18 27/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 variable indirection is introduced. Bash uses the value of the vari-
 able formed from the rest of parameter as the name of the variable;
 this variable is then expanded and that value is used in the rest of
 the substitution, rather than the value of parameter itself. This is
 known as indirect expansion. The exceptions to this are the expansions
 of ${!prefix*} and ${!name[@]} described below. The exclamation point
 must immediately follow the left brace in order to introduce indirec-
 tion.

 In each of the cases below, word is subject to tilde expansion, parame-
 ter expansion, command substitution, and arithmetic expansion. When
 not performing substring expansion, bash tests for a parameter that is
 unset or null; omitting the colon results in a test only for a parame-
 ter that is unset.

 ${parameter:-word}
 Use Default Values. If parameter is unset or null, the expan-
 sion of word is substituted. Otherwise, the value of parameter
 is substituted.
 ${parameter:=word}
 Assign Default Values. If parameter is unset or null, the
 expansion of word is assigned to parameter. The value of param-
 eter is then substituted. Positional parameters and special
 parameters may not be assigned to in this way.
 ${parameter:?word}
 Display Error if Null or Unset. If parameter is null or unset,
 the expansion of word (or a message to that effect if word is
 not present) is written to the standard error and the shell, if
 it is not interactive, exits. Otherwise, the value of parameter
 is substituted.
 ${parameter:+word}
 Use Alternate Value. If parameter is null or unset, nothing is
 substituted, otherwise the expansion of word is substituted.
 ${parameter:offset}
 ${parameter:offset:length}
 Substring Expansion. Expands to up to length characters of
 parameter starting at the character specified by offset. If
 length is omitted, expands to the substring of parameter start-
 ing at the character specified by offset. length and offset are
 arithmetic expressions (see ARITHMETIC EVALUATION below).
 length must evaluate to a number greater than or equal to zero.
 If offset evaluates to a number less than zero, the value is
 used as an offset from the end of the value of parameter. If
 parameter is @, the result is length positional parameters
 beginning at offset. If parameter is an array name indexed by @
 or *, the result is the length members of the array beginning
 with ${parameter[offset]}. A negative offset is taken relative
 to one greater than the maximum index of the specified array.
 Note that a negative offset must be separated from the colon by
 at least one space to avoid being confused with the :- expan-
 sion. Substring indexing is zero-based unless the positional

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 parameters are used, in which case the indexing starts at 1.

 ${!prefix*}
 ${!prefix@}
 Expands to the names of variables whose names begin with prefix,
 separated by the first character of the IFS special variable.

 ${!name[@]}
 ${!name[*]}
 If name is an array variable, expands to the list of array
 indices (keys) assigned in name. If name is not an array,
 expands to 0 if name is set and null otherwise. When @ is used
 and the expansion appears within double quotes, each key expands
 to a separate word.

 ${#parameter}
 The length in characters of the value of parameter is substi-
 tuted. If parameter is * or @, the value substituted is the
 number of positional parameters. If parameter is an array name
 subscripted by * or @, the value substituted is the number of
 elements in the array.

 ${parameter#word}
 ${parameter##word}
 The word is expanded to produce a pattern just as in pathname
 expansion. If the pattern matches the beginning of the value of
 parameter, then the result of the expansion is the expanded
 value of parameter with the shortest matching pattern (the ``#''
 case) or the longest matching pattern (the ``##'' case) deleted.
 If parameter is @ or *, the pattern removal operation is applied
 to each positional parameter in turn, and the expansion is the
 resultant list. If parameter is an array variable subscripted
 with @ or *, the pattern removal operation is applied to each
 member of the array in turn, and the expansion is the resultant
 list.

 ${parameter%word}
 ${parameter%%word}
 The word is expanded to produce a pattern just as in pathname
 expansion. If the pattern matches a trailing portion of the
 expanded value of parameter, then the result of the expansion is
 the expanded value of parameter with the shortest matching pat-
 tern (the ``%'' case) or the longest matching pattern (the
 ``%%'' case) deleted. If parameter is @ or *, the pattern
 removal operation is applied to each positional parameter in
 turn, and the expansion is the resultant list. If parameter is
 an array variable subscripted with @ or *, the pattern removal
 operation is applied to each member of the array in turn, and
 the expansion is the resultant list.

2024/05/30 18:18 29/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 ${parameter/pattern/string}
 The pattern is expanded to produce a pattern just as in pathname
 expansion. Parameter is expanded and the longest match of pat-
 tern against its value is replaced with string. If Ipattern
 begins with /, all matches of pattern are replaced with string.
 Normally only the first match is replaced. If pattern begins
 with #, it must match at the beginning of the expanded value of
 parameter. If pattern begins with %, it must match at the end
 of the expanded value of parameter. If string is null, matches
 of pattern are deleted and the / following pattern may be omit-
 ted. If parameter is @ or *, the substitution operation is
 applied to each positional parameter in turn, and the expansion
 is the resultant list. If parameter is an array variable sub-
 scripted with @ or *, the substitution operation is applied to
 each member of the array in turn, and the expansion is the
 resultant list.

 Command Substitution
 Command substitution allows the output of a command to replace the com-
 mand name. There are two forms:

 $(command)
 or
 `command`

 Bash performs the expansion by executing command and replacing the com-
 mand substitution with the standard output of the command, with any
 trailing newlines deleted. Embedded newlines are not deleted, but they
 may be removed during word splitting. The command substitution $(cat
 file) can be replaced by the equivalent but faster $(< file).

 When the old-style backquote form of substitution is used, backslash
 retains its literal meaning except when followed by $, `, or \. The
 first backquote not preceded by a backslash terminates the command sub-
 stitution. When using the $(command) form, all characters between the
 parentheses make up the command; none are treated specially.

 Command substitutions may be nested. To nest when using the backquoted
 form, escape the inner backquotes with backslashes.

 If the substitution appears within double quotes, word splitting and
 pathname expansion are not performed on the results.

 Arithmetic Expansion
 Arithmetic expansion allows the evaluation of an arithmetic expression
 and the substitution of the result. The format for arithmetic expan-
 sion is:

 $((expression))

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 The expression is treated as if it were within double quotes, but a
 double quote inside the parentheses is not treated specially. All
 tokens in the expression undergo parameter expansion, string expansion,
 command substitution, and quote removal. Arithmetic expansions may be
 nested.

 The evaluation is performed according to the rules listed below under
 ARITHMETIC EVALUATION. If expression is invalid, bash prints a message
 indicating failure and no substitution occurs.

 Process Substitution
 Process substitution is supported on systems that support named pipes
 (FIFOs) or the /dev/fd method of naming open files. It takes the form
 of <(list) or >(list). The process list is run with its input or out-
 put connected to a FIFO or some file in /dev/fd. The name of this file
 is passed as an argument to the current command as the result of the
 expansion. If the >(list) form is used, writing to the file will pro-
 vide input for list. If the <(list) form is used, the file passed as
 an argument should be read to obtain the output of list.

 When available, process substitution is performed simultaneously with
 parameter and variable expansion, command substitution, and arithmetic
 expansion.

 Word Splitting
 The shell scans the results of parameter expansion, command substitu-
 tion, and arithmetic expansion that did not occur within double quotes
 for word splitting.

 The shell treats each character of IFS as a delimiter, and splits the
 results of the other expansions into words on these characters. If IFS
 is unset, or its value is exactly <space><tab><newline>, the default,
 then any sequence of IFS characters serves to delimit words. If IFS
 has a value other than the default, then sequences of the whitespace
 characters space and tab are ignored at the beginning and end of the
 word, as long as the whitespace character is in the value of IFS (an
 IFS whitespace character). Any character in IFS that is not IFS white-
 space, along with any adjacent IFS whitespace characters, delimits a
 field. A sequence of IFS whitespace characters is also treated as a
 delimiter. If the value of IFS is null, no word splitting occurs.

 Explicit null arguments ("" or '') are retained. Unquoted implicit
 null arguments, resulting from the expansion of parameters that have no
 values, are removed. If a parameter with no value is expanded within
 double quotes, a null argument results and is retained.

 Note that if no expansion occurs, no splitting is performed.

 Pathname Expansion
 After word splitting, unless the -f option has been set, bash scans

2024/05/30 18:18 31/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 each word for the characters *, ?, and [. If one of these characters
 appears, then the word is regarded as a pattern, and replaced with an
 alphabetically sorted list of file names matching the pattern. If no
 matching file names are found, and the shell option nullglob is dis-
 abled, the word is left unchanged. If the nullglob option is set, and
 no matches are found, the word is removed. If the failglob shell
 option is set, and no matches are found, an error message is printed
 and the command is not executed. If the shell option nocaseglob is
 enabled, the match is performed without regard to the case of alpha-
 betic characters. When a pattern is used for pathname expansion, the
 character ``.'' at the start of a name or immediately following a
 slash must be matched explicitly, unless the shell option dotglob is
 set. When matching a pathname, the slash character must always be
 matched explicitly. In other cases, the ``.'' character is not
 treated specially. See the description of shopt below under SHELL
 BUILTIN COMMANDS for a description of the nocaseglob, nullglob, fail-
 glob, and dotglob shell options.

 The GLOBIGNORE shell variable may be used to restrict the set of file
 names matching a pattern. If GLOBIGNORE is set, each matching file
 name that also matches one of the patterns in GLOBIGNORE is removed
 from the list of matches. The file names ``.'' and ``..'' are always
 ignored when GLOBIGNORE is set and not null. However, setting GLOBIG-
 NORE to a non-null value has the effect of enabling the dotglob shell
 option, so all other file names beginning with a ``.'' will match. To
 get the old behavior of ignoring file names beginning with a ``.'',
 make ``.*'' one of the patterns in GLOBIGNORE. The dotglob option is
 disabled when GLOBIGNORE is unset.

 Pattern Matching

 Any character that appears in a pattern, other than the special pattern
 characters described below, matches itself. The NUL character may not
 occur in a pattern. A backslash escapes the following character; the
 escaping backslash is discarded when matching. The special pattern
 characters must be quoted if they are to be matched literally.

 The special pattern characters have the following meanings:

Matches any string, including the null string.

? Matches any single character.

 [...] Matches any one of the enclosed characters. A pair of charac-
 ters separated by a hyphen denotes a range expression; any char-
 acter that sorts between those two characters, inclusive, using
 the current locale's collating sequence and character set, is
 matched. If the first character following the [is a ! or a ^
 then any character not enclosed is matched. The sorting order
 of characters in range expressions is determined by the current
 locale and the value of the LC_COLLATE shell variable, if set.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 A - may be matched by including it as the first or last charac-
 ter in the set. A] may be matched by including it as the first
 character in the set.

 Within [and], character classes can be specified using the
 syntax [:class:], where class is one of the following classes
 defined in the POSIX standard:
 alnum alpha ascii blank cntrl digit graph lower print punct
 space upper word xdigit
 A character class matches any character belonging to that class.
 The word character class matches letters, digits, and the char-
 acter _.

 Within [and], an equivalence class can be specified using the
 syntax [=c=], which matches all characters with the same colla-
 tion weight (as defined by the current locale) as the character
 c.

 Within [and], the syntax [.symbol.] matches the collating sym-
 bol symbol.

 If the extglob shell option is enabled using the shopt builtin, several
 extended pattern matching operators are recognized. In the following
 description, a pattern-list is a list of one or more patterns separated
 by a |. Composite patterns may be formed using one or more of the fol-
 lowing sub-patterns:

 ?(pattern-list)
 Matches zero or one occurrence of the given patterns
 *(pattern-list)
 Matches zero or more occurrences of the given patterns
 +(pattern-list)
 Matches one or more occurrences of the given patterns
 @(pattern-list)
 Matches one of the given patterns
 !(pattern-list)
 Matches anything except one of the given patterns

 Quote Removal
 After the preceding expansions, all unquoted occurrences of the charac-
 ters \, ', and " that did not result from one of the above expansions
 are removed.

REDIRECTION

 Before a command is executed, its input and output may be redirected
 using a special notation interpreted by the shell. Redirection may
 also be used to open and close files for the current shell execution
 environment. The following redirection operators may precede or appear
 anywhere within a simple command or may follow a command. Redirections

2024/05/30 18:18 33/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 are processed in the order they appear, from left to right.

 In the following descriptions, if the file descriptor number is omit-
 ted, and the first character of the redirection operator is <, the re-
 direction refers to the standard input (file descriptor 0). If the
 first character of the redirection operator is >, the redirection
 refers to the standard output (file descriptor 1).

 The word following the redirection operator in the following descrip-
 tions, unless otherwise noted, is subjected to brace expansion, tilde
 expansion, parameter expansion, command substitution, arithmetic expan-
 sion, quote removal, pathname expansion, and word splitting. If it
 expands to more than one word, bash reports an error.

 Note that the order of redirections is significant. For example, the
 command

 ls > dirlist 2>&1

 directs both standard output and standard error to the file dirlist,
 while the command

 ls 2>&1 > dirlist

 directs only the standard output to file dirlist, because the standard
 error was duplicated as standard output before the standard output was
 redirected to dirlist.

 Bash handles several filenames specially when they are used in redirec-
 tions, as described in the following table:

 /dev/fd/fd
 If fd is a valid integer, file descriptor fd is dupli-
 cated.
 /dev/stdin
 File descriptor 0 is duplicated.
 /dev/stdout
 File descriptor 1 is duplicated.
 /dev/stderr
 File descriptor 2 is duplicated.
 /dev/tcp/host/port
 If host is a valid hostname or Internet address, and port
 is an integer port number or service name, bash attempts
 to open a TCP connection to the corresponding socket.
 /dev/udp/host/port
 If host is a valid hostname or Internet address, and port
 is an integer port number or service name, bash attempts
 to open a UDP connection to the corresponding socket.

 A failure to open or create a file causes the redirection to fail.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 Redirections using file descriptors greater than 9 should be used with
 care, as they may conflict with file descriptors the shell uses inter-
 nally.

 Redirecting Input
 Redirection of input causes the file whose name results from the expan-
 sion of word to be opened for reading on file descriptor n, or the
 standard input (file descriptor 0) if n is not specified.

 The general format for redirecting input is:

 [n]<word

 Redirecting Output
 Redirection of output causes the file whose name results from the
 expansion of word to be opened for writing on file descriptor n, or the
 standard output (file descriptor 1) if n is not specified. If the file
 does not exist it is created; if it does exist it is truncated to zero
 size.

 The general format for redirecting output is:

 [n]>word

 If the redirection operator is >, and the noclobber option to the set
 builtin has been enabled, the redirection will fail if the file whose
 name results from the expansion of word exists and is a regular file.
 If the redirection operator is >|, or the redirection operator is > and
 the noclobber option to the set builtin command is not enabled, the re-
 direction is attempted even if the file named by word exists.

 Appending Redirected Output
 Redirection of output in this fashion causes the file whose name
 results from the expansion of word to be opened for appending on file
 descriptor n, or the standard output (file descriptor 1) if n is not
 specified. If the file does not exist it is created.

 The general format for appending output is:

 [n]>>word

 Redirecting Standard Output and Standard Error
 Bash allows both the standard output (file descriptor 1) and the stan-
 dard error output (file descriptor 2) to be redirected to the file
 whose name is the expansion of word with this construct.

 There are two formats for redirecting standard output and standard
 error:

 &>word

2024/05/30 18:18 35/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 and
 >&word

 Of the two forms, the first is preferred. This is semantically equiva-
 lent to

 >word 2>&1

 Here Documents
 This type of redirection instructs the shell to read input from the
 current source until a line containing only word (with no trailing
 blanks) is seen. All of the lines read up to that point are then used
 as the standard input for a command.

 The format of here-documents is:

 <<[-]word
 here-document
 delimiter

 No parameter expansion, command substitution, arithmetic expansion, or
 pathname expansion is performed on word. If any characters in word are
 quoted, the delimiter is the result of quote removal on word, and the
 lines in the here-document are not expanded. If word is unquoted, all
 lines of the here-document are subjected to parameter expansion, com-
 mand substitution, and arithmetic expansion. In the latter case, the
 character sequence \<newline> is ignored, and \ must be used to quote
 the characters \, $, and `.

 If the redirection operator is <<-, then all leading tab characters are
 stripped from input lines and the line containing delimiter. This
 allows here-documents within shell scripts to be indented in a natural
 fashion.

 Here Strings
 A variant of here documents, the format is:

 <<<word

 The word is expanded and supplied to the command on its standard input.

 Duplicating File Descriptors
 The redirection operator

 [n]<&word

 is used to duplicate input file descriptors. If word expands to one or
 more digits, the file descriptor denoted by n is made to be a copy of
 that file descriptor. If the digits in word do not specify a file
 descriptor open for input, a redirection error occurs. If word evalu-

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 ates to -, file descriptor n is closed. If n is not specified, the
 standard input (file descriptor 0) is used.

 The operator

 [n]>&word

 is used similarly to duplicate output file descriptors. If n is not
 specified, the standard output (file descriptor 1) is used. If the
 digits in word do not specify a file descriptor open for output, a re-
 direction error occurs. As a special case, if n is omitted, and word
 does not expand to one or more digits, the standard output and standard
 error are redirected as described previously.

 Moving File Descriptors
 The redirection operator

 [n]<&digit-

 moves the file descriptor digit to file descriptor n, or the standard
 input (file descriptor 0) if n is not specified. digit is closed after
 being duplicated to n.

 Similarly, the redirection operator

 [n]>&digit-

 moves the file descriptor digit to file descriptor n, or the standard
 output (file descriptor 1) if n is not specified.

 Opening File Descriptors for Reading and Writing
 The redirection operator

 [n]<>word

 causes the file whose name is the expansion of word to be opened for
 both reading and writing on file descriptor n, or on file descriptor 0
 if n is not specified. If the file does not exist, it is created.

ALIASES

 Aliases allow a string to be substituted for a word when it is used as
 the first word of a simple command. The shell maintains a list of
 aliases that may be set and unset with the alias and unalias builtin
 commands (see SHELL BUILTIN COMMANDS below). The first word of each
 simple command, if unquoted, is checked to see if it has an alias. If
 so, that word is replaced by the text of the alias. The characters /,
 $, `, and = and any of the shell metacharacters or quoting characters
 listed above may not appear in an alias name. The replacement text may
 contain any valid shell input, including shell metacharacters. The

2024/05/30 18:18 37/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 first word of the replacement text is tested for aliases, but a word
 that is identical to an alias being expanded is not expanded a second
 time. This means that one may alias ls to ls -F, for instance, and
 bash does not try to recursively expand the replacement text. If the
 last character of the alias value is a blank, then the next command
 word following the alias is also checked for alias expansion.

 Aliases are created and listed with the alias command, and removed with
 the unalias command.

 There is no mechanism for using arguments in the replacement text. If
 arguments are needed, a shell function should be used (see FUNCTIONS
 below).

 Aliases are not expanded when the shell is not interactive, unless the
 expand_aliases shell option is set using shopt (see the description of
 shopt under SHELL BUILTIN COMMANDS below).

 The rules concerning the definition and use of aliases are somewhat
 confusing. Bash always reads at least one complete line of input
 before executing any of the commands on that line. Aliases are
 expanded when a command is read, not when it is executed. Therefore,
 an alias definition appearing on the same line as another command does
 not take effect until the next line of input is read. The commands
 following the alias definition on that line are not affected by the new
 alias. This behavior is also an issue when functions are executed.
 Aliases are expanded when a function definition is read, not when the
 function is executed, because a function definition is itself a com-
 pound command. As a consequence, aliases defined in a function are not
 available until after that function is executed. To be safe, always
 put alias definitions on a separate line, and do not use alias in com-
 pound commands.

 For almost every purpose, aliases are superseded by shell functions.

FUNCTIONS

 A shell function, defined as described above under SHELL GRAMMAR,
 stores a series of commands for later execution. When the name of a
 shell function is used as a simple command name, the list of commands
 associated with that function name is executed. Functions are executed
 in the context of the current shell; no new process is created to
 interpret them (contrast this with the execution of a shell script).
 When a function is executed, the arguments to the function become the
 positional parameters during its execution. The special parameter # is
 updated to reflect the change. Special parameter 0 is unchanged. The
 first element of the FUNCNAME variable is set to the name of the func-
 tion while the function is executing. All other aspects of the shell
 execution environment are identical between a function and its caller
 with the exception that the DEBUG and RETURN traps (see the description

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 of the trap builtin under SHELL BUILTIN COMMANDS below) are not inher-
 ited unless the function has been given the trace attribute (see the
 description of the declare builtin below) or the -o functrace shell
 option has been enabled with the set builtin (in which case all func-
 tions inherit the DEBUG and RETURN traps).

 Variables local to the function may be declared with the local builtin
 command. Ordinarily, variables and their values are shared between the
 function and its caller.

 If the builtin command return is executed in a function, the function
 completes and execution resumes with the next command after the func-
 tion call. Any command associated with the RETURN trap is executed
 before execution resumes. When a function completes, the values of the
 positional parameters and the special parameter # are restored to the
 values they had prior to the function's execution.

 Function names and definitions may be listed with the -f option to the
 declare or typeset builtin commands. The -F option to declare or type-
 set will list the function names only (and optionally the source file
 and line number, if the extdebug shell option is enabled). Functions
 may be exported so that subshells automatically have them defined with
 the -f option to the export builtin. A function definition may be
 deleted using the -f option to the unset builtin. Note that shell
 functions and variables with the same name may result in multiple iden-
 tically-named entries in the environment passed to the shell's chil-
 dren. Care should be taken in cases where this may cause a problem.

 Functions may be recursive. No limit is imposed on the number of
 recursive calls.

ARITHMETIC EVALUATION

 The shell allows arithmetic expressions to be evaluated, under certain
 circumstances (see the let and declare builtin commands and Arithmetic
 Expansion). Evaluation is done in fixed-width integers with no check
 for overflow, though division by 0 is trapped and flagged as an error.
 The operators and their precedence, associativity, and values are the
 same as in the C language. The following list of operators is grouped
 into levels of equal-precedence operators. The levels are listed in
 order of decreasing precedence.

 id++ id--
 variable post-increment and post-decrement
 ++id --id
 variable pre-increment and pre-decrement
 - + unary minus and plus
 ! ~ logical and bitwise negation
 ** exponentiation
 * / % multiplication, division, remainder

2024/05/30 18:18 39/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 + - addition, subtraction
 << >> left and right bitwise shifts
 <= >= < >
 comparison
 == != equality and inequality
 & bitwise AND
 ^ bitwise exclusive OR
 | bitwise OR
 && logical AND
 || logical OR
 expr?expr:expr
 conditional operator
 = *= /= %= += -= <<= >>= &= ^= |=
 assignment
 expr1 , expr2
 comma

 Shell variables are allowed as operands; parameter expansion is per-
 formed before the expression is evaluated. Within an expression, shell
 variables may also be referenced by name without using the parameter
 expansion syntax. A shell variable that is null or unset evaluates to
 0 when referenced by name without using the parameter expansion syntax.
 The value of a variable is evaluated as an arithmetic expression when
 it is referenced, or when a variable which has been given the integer
 attribute using declare -i is assigned a value. A null value evaluates
 to 0. A shell variable need not have its integer attribute turned on
 to be used in an expression.

 Constants with a leading 0 are interpreted as octal numbers. A leading
 0x or 0X denotes hexadecimal. Otherwise, numbers take the form
 [base#]n, where base is a decimal number between 2 and 64 representing
 the arithmetic base, and n is a number in that base. If base# is omit-
 ted, then base 10 is used. The digits greater than 9 are represented
 by the lowercase letters, the uppercase letters, @, and _, in that
 order. If base is less than or equal to 36, lowercase and uppercase
 letters may be used interchangeably to represent numbers between 10 and
 35.

 Operators are evaluated in order of precedence. Sub-expressions in
 parentheses are evaluated first and may override the precedence rules
 above.

CONDITIONAL EXPRESSIONS

 Conditional expressions are used by the [[compound command and the
 test and [builtin commands to test file attributes and perform string
 and arithmetic comparisons. Expressions are formed from the following
 unary or binary primaries. If any file argument to one of the pri-
 maries is of the form /dev/fd/n, then file descriptor n is checked. If
 the file argument to one of the primaries is one of /dev/stdin,
 /dev/stdout, or /dev/stderr, file descriptor 0, 1, or 2, respectively,

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 is checked.

 Unless otherwise specified, primaries that operate on files follow sym-
 bolic links and operate on the target of the link, rather than the link
 itself.

a file1.

True if file exists.

b file1.

True if file exists and is a block special file.

c file1.

True if file exists and is a character special file.

d file1.

True if file exists and is a directory.

e file1.

True if file exists.

f file1.

True if file exists and is a regular file.

g file1.

True if file exists and is set-group-id.

h file1.

True if file exists and is a symbolic link.

k file1.

True if file exists and its ``sticky bit is set. -p file True if file exists and is a
named pipe (FIFO). -r file True if file exists and is readable. -s file True
if file exists and has a size greater than zero. -t fd True if file
descriptor fd is open and refers to a terminal. -u file True if file exists
and its set-user-id bit is set. -w file True if file exists and is writable.
-x file True if file exists and is executable. -O file True if file exists
and is owned by the effective user id. -G file True if file exists and is
owned by the effective group id. -L file True if file exists and is a
symbolic link. -S file True if file exists and is a socket. -N file True if
file exists and has been modified since it was last read. file1 -nt file2
True if file1 is newer (according to modification date) than file2, or if
file1 exists and file2 does not. file1 -ot file2 True if file1 is older than
file2, or if file2 exists and file1 does not. file1 -ef file2 True if file1
and file2 refer to the same device and inode num- bers. -o optname True if

2024/05/30 18:18 41/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

shell option optname is enabled. See the list of options under the
description of the -o option to the set builtin below. -z string True if the
length of string is zero. string -n string True if the length of string is
non-zero. string1 == string2 True if the strings are equal. = may be used in
place of == for strict POSIX compliance. string1 != string2 True if the
strings are not equal. string1 < string2 True if string1 sorts before string2
lexicographically in the current locale. string1 > string2 True if string1
sorts after string2 lexicographically in the current locale. arg1 OP arg2 OP
is one of -eq, -ne, -lt, -le, -gt, or -ge. These arithmetic binary operators
return true if arg1 is equal to, not equal to, less than, less than or equal
to, greater than, or greater than or equal to arg2, respectively. Arg1 and
arg2 may be positive or negative integers. SIMPLE COMMAND EXPANSION When a
simple command is executed, the shell performs the following expansions,
assignments, and redirections, from left to right. 1. The words that the
parser has marked as variable assignments (those preceding the command name)
and redirections are saved for later processing. 2. The words that are not
variable assignments or redirections are expanded. If any words remain after
expansion, the first word is taken to be the name of the command and the
remaining words are the arguments. 3. Redirections are performed as described
above under REDIRECTION. 4. The text after the = in each variable assignment
undergoes tilde expansion, parameter expansion, command substitution,
arithmetic expansion, and quote removal before being assigned to the vari-
able. If no command name results, the variable assignments affect the current
shell environment. Otherwise, the variables are added to the environ- ment of
the executed command and do not affect the current shell envi- ronment. If
any of the assignments attempts to assign a value to a readonly variable, an
error occurs, and the command exits with a non- zero status. If no command
name results, redirections are performed, but do not affect the current shell
environment. A redirection error causes the command to exit with a non-zero
status. If there is a command name left after expansion, execution proceeds
as described below. Otherwise, the command exits. If one of the expan- sions
contained a command substitution, the exit status of the command is the exit
status of the last command substitution performed. If there were no command
substitutions, the command exits with a status of zero. COMMAND EXECUTION
After a command has been split into words, if it results in a simple command
and an optional list of arguments, the following actions are taken. If the
command name contains no slashes, the shell attempts to locate it. If there
exists a shell function by that name, that function is invoked as described
above in FUNCTIONS. If the name does not match a function, the shell searches
for it in the list of shell builtins. If a match is found, that builtin is
invoked. If the name is neither a shell function nor a builtin, and contains
no slashes, bash searches each element of the PATH for a directory con-
taining an executable file by that name. Bash uses a hash table to remember
the full pathnames of executable files (see hash under SHELL BUILTIN COMMANDS
below). A full search of the directories in PATH is performed only if the
command is not found in the hash table. If the search is unsuccessful, the
shell prints an error message and returns an exit status of 127. If the
search is successful, or if the command name contains one or more slashes,
the shell executes the named program in a separate execu- tion environment.
Argument 0 is set to the name given, and the remain- ing arguments to the
command are set to the arguments given, if any. If this execution fails

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

because the file is not in executable format, and the file is not a
directory, it is assumed to be a shell script, a file containing shell
commands. A subshell is spawned to execute it. This subshell reinitializes
itself, so that the effect is as if a new shell had been invoked to handle
the script, with the exception that the locations of commands remembered by
the parent (see hash below under SHELL BUILTIN COMMANDS) are retained by the
child. If the program is a file beginning with #!, the remainder of the first
line specifies an interpreter for the program. The shell executes the
specified interpreter on operating systems that do not handle this exe-
cutable format themselves. The arguments to the interpreter consist of a
single optional argument following the interpreter name on the first line of
the program, followed by the name of the program, followed by the command
arguments, if any. COMMAND EXECUTION ENVIRONMENT The shell has an execution
environment, which consists of the follow- ing: o open files inherited by the
shell at invocation, as modified by redirections supplied to the exec builtin
o the current working directory as set by cd, pushd, or popd, or inherited by
the shell at invocation o the file creation mode mask as set by umask or
inherited from the shell's parent o current traps set by trap o shell
parameters that are set by variable assignment or with set or inherited from
the shell's parent in the environment o shell functions defined during
execution or inherited from the shell's parent in the environment o options
enabled at invocation (either by default or with com- mand-line arguments) or
by set o options enabled by shopt o shell aliases defined with alias o
various process IDs, including those of background jobs, the value of $$, and
the value of $PPID When a simple command other than a builtin or shell
function is to be executed, it is invoked in a separate execution environment
that con- sists of the following. Unless otherwise noted, the values are
inher- ited from the shell. o the shell's open files, plus any modifications
and additions specified by redirections to the command o the current working
directory o the file creation mode mask o shell variables and functions
marked for export, along with variables exported for the command, passed in
the environment o traps caught by the shell are reset to the values inherited
from the shell's parent, and traps ignored by the shell are ignored A command
invoked in this separate environment cannot affect the shell's execution
environment. Command substitution, commands grouped with parentheses, and
asynchro- nous commands are invoked in a subshell environment that is a
duplicate of the shell environment, except that traps caught by the shell are
reset to the values that the shell inherited from its parent at invoca- tion.
Builtin commands that are invoked as part of a pipeline are also executed in
a subshell environment. Changes made to the subshell envi- ronment cannot
affect the shell's execution environment. If a command is followed by a & and
job control is not active, the default standard input for the command is the
empty file /dev/null. Otherwise, the invoked command inherits the file
descriptors of the calling shell as modified by redirections. ENVIRONMENT
When a program is invoked it is given an array of strings called the
environment. This is a list of name-value pairs, of the form name=value. The
shell provides several ways to manipulate the environment. On invocation, the
shell scans its own environment and creates a parameter for each name found,
automatically marking it for export to child pro- cesses. Executed commands
inherit the environment. The export and declare -x commands allow parameters
and functions to be added to and deleted from the environment. If the value

2024/05/30 18:18 43/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

of a parameter in the envi- ronment is modified, the new value becomes part
of the environment, replacing the old. The environment inherited by any
executed command consists of the shell's initial environment, whose values
may be modi- fied in the shell, less any pairs removed by the unset command,
plus any additions via the export and declare -x commands. The environment
for any simple command or function may be augmented temporarily by prefixing
it with parameter assignments, as described above in PARAMETERS. These
assignment statements affect only the envi- ronment seen by that command. If
the -k option is set (see the set builtin command below), then all parameter
assignments are placed in the environment for a command, not just those that
precede the command name. When bash invokes an external command, the variable
_ is set to the full file name of the command and passed to that command in
its envi- ronment. EXIT STATUS For the shell's purposes, a command which
exits with a zero exit status has succeeded. An exit status of zero indicates
success. A non-zero exit status indicates failure. When a command terminates
on a fatal signal N, bash uses the value of 128+N as the exit status. If a
command is not found, the child process created to execute it returns a
status of 127. If a command is found but is not executable, the return status
is 126. If a command fails because of an error during expansion or
redirection, the exit status is greater than zero. Shell builtin commands
return a status of 0 (true) if successful, and non-zero (false) if an error
occurs while they execute. All builtins return an exit status of 2 to
indicate incorrect usage. Bash itself returns the exit status of the last
command executed, unless a syntax error occurs, in which case it exits with a
non-zero value. See also the exit builtin command below. SIGNALS When bash is
interactive, in the absence of any traps, it ignores SIGTERM (so that kill 0
does not kill an interactive shell), and SIGINT is caught and handled (so
that the wait builtin is interruptible). In all cases, bash ignores SIGQUIT.
If job control is in effect, bash ignores SIGTTIN, SIGTTOU, and SIGTSTP. Non-
builtin commands run by bash have signal handlers set to the values inherited
by the shell from its parent. When job control is not in effect, asynchronous
commands ignore SIGINT and SIGQUIT in addition to these inherited handlers.
Commands run as a result of command substi- tution ignore the keyboard-
generated job control signals SIGTTIN, SIGT- TOU, and SIGTSTP. The shell
exits by default upon receipt of a SIGHUP. Before exiting, an interactive
shell resends the SIGHUP to all jobs, running or stopped. Stopped jobs are
sent SIGCONT to ensure that they receive the SIGHUP. To prevent the shell
from sending the signal to a particular job, it should be removed from the
jobs table with the disown builtin (see SHELL BUILTIN COMMANDS below) or
marked to not receive SIGHUP using disown -h. If the huponexit shell option
has been set with shopt, bash sends a SIGHUP to all jobs when an interactive
login shell exits. If bash is waiting for a command to complete and receives
a signal for which a trap has been set, the trap will not be executed until
the com- mand completes. When bash is waiting for an asynchronous command via
the wait builtin, the reception of a signal for which a trap has been set
will cause the wait builtin to return immediately with an exit sta- tus
greater than 128, immediately after which the trap is executed. JOB CONTROL
Job control refers to the ability to selectively stop (suspend) the execution
of processes and continue (resume) their execution at a later point. A user
typically employs this facility via an interactive interface supplied jointly
by the system's terminal driver and bash. The shell associates a job with

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

each pipeline. It keeps a table of currently executing jobs, which may be
listed with the jobs command. When bash starts a job asynchronously (in the
background), it prints a line that looks like: [1] 25647 indicating that this
job is job number 1 and that the process ID of the last process in the
pipeline associated with this job is 25647. All of the processes in a single
pipeline are members of the same job. Bash uses the job abstraction as the
basis for job control. To facilitate the implementation of the user interface
to job control, the operating system maintains the notion of a current
terminal process group ID. Members of this process group (processes whose
process group ID is equal to the current terminal process group ID) receive
keyboard- generated signals such as SIGINT. These processes are said to be in
the foreground. Background processes are those whose process group ID differs
from the terminal's; such processes are immune to keyboard-gen- erated
signals. Only foreground processes are allowed to read from or write to the
terminal. Background processes which attempt to read from (write to) the
terminal are sent a SIGTTIN (SIGTTOU) signal by the ter- minal driver, which,
unless caught, suspends the process. If the operating system on which bash is
running supports job control, bash contains facilities to use it. Typing the
suspend character (typ- ically ^Z, Control-Z) while a process is running
causes that process to be stopped and returns control to bash. Typing the
delayed suspend character (typically ^Y, Control-Y) causes the process to be
stopped when it attempts to read input from the terminal, and control to be
returned to bash. The user may then manipulate the state of this job, using
the bg command to continue it in the background, the fg command to continue
it in the foreground, or the kill command to kill it. A ^Z takes effect
immediately, and has the additional side effect of causing pending output and
typeahead to be discarded. There are a number of ways to refer to a job in
the shell. The charac- ter % introduces a job name. Job number n may be
referred to as %n. A job may also be referred to using a prefix of the name
used to start it, or using a substring that appears in its command line. For
exam- ple, %ce refers to a stopped ce job. If a prefix matches more than one
job, bash reports an error. Using %?ce, on the other hand, refers to any job
containing the string ce in its command line. If the substring matches more
than one job, bash reports an error. The symbols %% and %+ refer to the
shell's notion of the current job, which is the last job stopped while it was
in the foreground or started in the back- ground. The previous job may be
referenced using %-. In output per- taining to jobs (e.g., the output of the
jobs command), the current job is always flagged with a +, and the previous
job with a -. A single % (with no accompanying job specification) also refers
to the current job. Simply naming a job can be used to bring it into the
foreground: %1 is a synonym for ``fg %1, bringing job 1 from the background into the

 foreground. Similarly, ``%1 &'' resumes job 1 in the background,
 equivalent to ``bg %1''.

 The shell learns immediately whenever a job changes state. Normally,
 bash waits until it is about to print a prompt before reporting changes
 in a job's status so as to not interrupt any other output. If the -b
 option to the set builtin command is enabled, bash reports such changes
 immediately. Any trap on SIGCHLD is executed for each child that

2024/05/30 18:18 45/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 exits.

 If an attempt to exit bash is made while jobs are stopped, the shell
 prints a warning message. The jobs command may then be used to inspect
 their status. If a second attempt to exit is made without an interven-
 ing command, the shell does not print another warning, and the stopped
 jobs are terminated.

PROMPTING

 When executing interactively, bash displays the primary prompt PS1 when
 it is ready to read a command, and the secondary prompt PS2 when it
 needs more input to complete a command. Bash allows these prompt
 strings to be customized by inserting a number of backslash-escaped
 special characters that are decoded as follows:
 \a an ASCII bell character (07)
 \d the date in "Weekday Month Date" format (e.g., "Tue May
 26")
 \D{format}
 the format is passed to strftime(3) and the result is
 inserted into the prompt string; an empty format results
 in a locale-specific time representation. The braces are
 required
 \e an ASCII escape character (033)
 \h the hostname up to the first `.'
 \H the hostname
 \j the number of jobs currently managed by the shell
 \l the basename of the shell's terminal device name
 \n newline
 \r carriage return
 \s the name of the shell, the basename of $0 (the portion
 following the final slash)
 \t the current time in 24-hour HH:MM:SS format
 \T the current time in 12-hour HH:MM:SS format
 \@ the current time in 12-hour am/pm format
 \A the current time in 24-hour HH:MM format
 \u the username of the current user
 \v the version of bash (e.g., 2.00)
 \V the release of bash, version + patch level (e.g., 2.00.0)
 \w the current working directory, with $HOME abbreviated
 with a tilde
 \W the basename of the current working directory, with $HOME
 abbreviated with a tilde
 \! the history number of this command
 \# the command number of this command
 \$ if the effective UID is 0, a #, otherwise a $
 \nnn the character corresponding to the octal number nnn
 \\ a backslash
 \[begin a sequence of non-printing characters, which could
 be used to embed a terminal control sequence into the
 prompt

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 \] end a sequence of non-printing characters

 The command number and the history number are usually different: the
 history number of a command is its position in the history list, which
 may include commands restored from the history file (see HISTORY
 below), while the command number is the position in the sequence of
 commands executed during the current shell session. After the string
 is decoded, it is expanded via parameter expansion, command substitu-
 tion, arithmetic expansion, and quote removal, subject to the value of
 the promptvars shell option (see the description of the shopt command
 under SHELL BUILTIN COMMANDS below).

READLINE

 This is the library that handles reading input when using an interac-
 tive shell, unless the --noediting option is given at shell invocation.
 By default, the line editing commands are similar to those of emacs. A
 vi-style line editing interface is also available. To turn off line
 editing after the shell is running, use the +o emacs or +o vi options
 to the set builtin (see SHELL BUILTIN COMMANDS below).

 Readline Notation
 In this section, the emacs-style notation is used to denote keystrokes.
 Control keys are denoted by C-key, e.g., C-n means Control-N. Simi-
 larly, meta keys are denoted by M-key, so M-x means Meta-X. (On key-
 boards without a meta key, M-x means ESC x, i.e., press the Escape key
 then the x key. This makes ESC the meta prefix. The combination M-C-x
 means ESC-Control-x, or press the Escape key then hold the Control key
 while pressing the x key.)

 Readline commands may be given numeric arguments, which normally act as
 a repeat count. Sometimes, however, it is the sign of the argument
 that is significant. Passing a negative argument to a command that
 acts in the forward direction (e.g., kill-line) causes that command to
 act in a backward direction. Commands whose behavior with arguments
 deviates from this are noted below.

 When a command is described as killing text, the text deleted is saved
 for possible future retrieval (yanking). The killed text is saved in a
 kill ring. Consecutive kills cause the text to be accumulated into one
 unit, which can be yanked all at once. Commands which do not kill text
 separate the chunks of text on the kill ring.

 Readline Initialization
 Readline is customized by putting commands in an initialization file
 (the inputrc file). The name of this file is taken from the value of
 the INPUTRC variable. If that variable is unset, the default is
 ~/.inputrc. When a program which uses the readline library starts up,
 the initialization file is read, and the key bindings and variables are
 set. There are only a few basic constructs allowed in the readline

2024/05/30 18:18 47/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 initialization file. Blank lines are ignored. Lines beginning with a
 # are comments. Lines beginning with a $ indicate conditional con-
 structs. Other lines denote key bindings and variable settings.

 The default key-bindings may be changed with an inputrc file. Other
 programs that use this library may add their own commands and bindings.

 For example, placing

 M-Control-u: universal-argument
 or
 C-Meta-u: universal-argument
 into the inputrc would make M-C-u execute the readline command univer-
 sal-argument.

 The following symbolic character names are recognized: RUBOUT, DEL,
 ESC, LFD, NEWLINE, RET, RETURN, SPC, SPACE, and TAB.

 In addition to command names, readline allows keys to be bound to a
 string that is inserted when the key is pressed (a macro).

 Readline Key Bindings
 The syntax for controlling key bindings in the inputrc file is simple.
 All that is required is the name of the command or the text of a macro
 and a key sequence to which it should be bound. The name may be speci-
 fied in one of two ways: as a symbolic key name, possibly with Meta- or
 Control- prefixes, or as a key sequence.

 When using the form keyname:function-name or macro, keyname is the name
 of a key spelled out in English. For example:

 Control-u: universal-argument
 Meta-Rubout: backward-kill-word
 Control-o: "> output"

 In the above example, C-u is bound to the function universal-argument,
 M-DEL is bound to the function backward-kill-word, and C-o is bound to
 run the macro expressed on the right hand side (that is, to insert the
 text ``> output'' into the line).

 In the second form, "keyseq":function-name or macro, keyseq differs
 from keyname above in that strings denoting an entire key sequence may
 be specified by placing the sequence within double quotes. Some GNU
 Emacs style key escapes can be used, as in the following example, but
 the symbolic character names are not recognized.

 "\C-u": universal-argument
 "\C-x\C-r": re-read-init-file
 "\e[11~": "Function Key 1"

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 In this example, C-u is again bound to the function universal-argument.
 C-x C-r is bound to the function re-read-init-file, and ESC [1 1 ~ is
 bound to insert the text ``Function Key 1''.

 The full set of GNU Emacs style escape sequences is
 \C- control prefix
 \M- meta prefix
 \e an escape character
 \\ backslash
 \" literal "
 \' literal '

 In addition to the GNU Emacs style escape sequences, a second set of
 backslash escapes is available:
 \a alert (bell)
 \b backspace
 \d delete
 \f form feed
 \n newline
 \r carriage return
 \t horizontal tab
 \v vertical tab
 \nnn the eight-bit character whose value is the octal value
 nnn (one to three digits)
 \xHH the eight-bit character whose value is the hexadecimal
 value HH (one or two hex digits)

 When entering the text of a macro, single or double quotes must be used
 to indicate a macro definition. Unquoted text is assumed to be a func-
 tion name. In the macro body, the backslash escapes described above
 are expanded. Backslash will quote any other character in the macro
 text, including " and '.

 Bash allows the current readline key bindings to be displayed or modi-
 fied with the bind builtin command. The editing mode may be switched
 during interactive use by using the -o option to the set builtin com-
 mand (see SHELL BUILTIN COMMANDS below).

 Readline Variables
 Readline has variables that can be used to further customize its behav-
 ior. A variable may be set in the inputrc file with a statement of the
 form

 set variable-name value

 Except where noted, readline variables can take the values On or Off
 (without regard to case). Unrecognized variable names are ignored.
 When a variable value is read, empty or null values, "on" (case-insen-
 sitive), and "1" are equivalent to On. All other values are equivalent
 to Off. The variables and their default values are:

2024/05/30 18:18 49/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 bell-style (audible)
 Controls what happens when readline wants to ring the terminal
 bell. If set to none, readline never rings the bell. If set to
 visible, readline uses a visible bell if one is available. If
 set to audible, readline attempts to ring the terminal's bell.
 bind-tty-special-chars (On)
 If set to On, readline attempts to bind the control characters
 treated specially by the kernel's terminal driver to their read-
 line equivalents.
 comment-begin (``#'')
 The string that is inserted when the readline insert-comment
 command is executed. This command is bound to M-# in emacs mode
 and to # in vi command mode.
 completion-ignore-case (Off)
 If set to On, readline performs filename matching and completion
 in a case-insensitive fashion.
 completion-query-items (100)
 This determines when the user is queried about viewing the num-
 ber of possible completions generated by the possible-comple-
 tions command. It may be set to any integer value greater than
 or equal to zero. If the number of possible completions is
 greater than or equal to the value of this variable, the user is
 asked whether or not he wishes to view them; otherwise they are
 simply listed on the terminal.
 convert-meta (On)
 If set to On, readline will convert characters with the eighth
 bit set to an ASCII key sequence by stripping the eighth bit and
 prefixing an escape character (in effect, using escape as the
 meta prefix).
 disable-completion (Off)
 If set to On, readline will inhibit word completion. Completion
 characters will be inserted into the line as if they had been
 mapped to self-insert.
 editing-mode (emacs)
 Controls whether readline begins with a set of key bindings sim-
 ilar to emacs or vi. editing-mode can be set to either emacs or
 vi.
 enable-keypad (Off)
 When set to On, readline will try to enable the application key-
 pad when it is called. Some systems need this to enable the
 arrow keys.
 expand-tilde (Off)
 If set to on, tilde expansion is performed when readline
 attempts word completion.
 history-preserve-point (Off)
 If set to on, the history code attempts to place point at the
 same location on each history line retrieved with previous-his-
 tory or next-history.
 horizontal-scroll-mode (Off)
 When set to On, makes readline use a single line for display,
 scrolling the input horizontally on a single screen line when it

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 becomes longer than the screen width rather than wrapping to a
 new line.
 input-meta (Off)
 If set to On, readline will enable eight-bit input (that is, it
 will not strip the high bit from the characters it reads),
 regardless of what the terminal claims it can support. The name
 meta-flag is a synonym for this variable.
 isearch-terminators (``C-[C-J'')
 The string of characters that should terminate an incremental
 search without subsequently executing the character as a com-
 mand. If this variable has not been given a value, the charac-
 ters ESC and C-J will terminate an incremental search.
 keymap (emacs)
 Set the current readline keymap. The set of valid keymap names
 is emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-com-
 mand, and vi-insert. vi is equivalent to vi-command; emacs is
 equivalent to emacs-standard. The default value is emacs; the
 value of editing-mode also affects the default keymap.
 mark-directories (On)
 If set to On, completed directory names have a slash appended.
 mark-modified-lines (Off)
 If set to On, history lines that have been modified are dis-
 played with a preceding asterisk (*).
 mark-symlinked-directories (Off)
 If set to On, completed names which are symbolic links to direc-
 tories have a slash appended (subject to the value of
 mark-directories).
 match-hidden-files (On)
 This variable, when set to On, causes readline to match files
 whose names begin with a `.' (hidden files) when performing
 filename completion, unless the leading `.' is supplied by the
 user in the filename to be completed.
 output-meta (Off)
 If set to On, readline will display characters with the eighth
 bit set directly rather than as a meta-prefixed escape sequence.
 page-completions (On)
 If set to On, readline uses an internal more-like pager to dis-
 play a screenful of possible completions at a time.
 print-completions-horizontally (Off)
 If set to On, readline will display completions with matches
 sorted horizontally in alphabetical order, rather than down the
 screen.
 show-all-if-ambiguous (Off)
 This alters the default behavior of the completion functions.
 If set to on, words which have more than one possible completion
 cause the matches to be listed immediately instead of ringing
 the bell.
 show-all-if-unmodified (Off)
 This alters the default behavior of the completion functions in
 a fashion similar to show-all-if-ambiguous. If set to on, words
 which have more than one possible completion without any possi-

2024/05/30 18:18 51/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 ble partial completion (the possible completions don't share a
 common prefix) cause the matches to be listed immediately
 instead of ringing the bell.
 visible-stats (Off)
 If set to On, a character denoting a file's type as reported by
 stat(2) is appended to the filename when listing possible com-
 pletions.

 Readline Conditional Constructs
 Readline implements a facility similar in spirit to the conditional
 compilation features of the C preprocessor which allows key bindings
 and variable settings to be performed as the result of tests. There
 are four parser directives used.

 $if The $if construct allows bindings to be made based on the edit-
 ing mode, the terminal being used, or the application using
 readline. The text of the test extends to the end of the line;
 no characters are required to isolate it.

 mode The mode= form of the $if directive is used to test
 whether readline is in emacs or vi mode. This may be
 used in conjunction with the set keymap command, for
 instance, to set bindings in the emacs-standard and
 emacs-ctlx keymaps only if readline is starting out in
 emacs mode.

 term The term= form may be used to include terminal-specific
 key bindings, perhaps to bind the key sequences output by
 the terminal's function keys. The word on the right side
 of the = is tested against the both full name of the ter-
 minal and the portion of the terminal name before the
 first -. This allows sun to match both sun and sun-cmd,
 for instance.

 application
 The application construct is used to include application-
 specific settings. Each program using the readline
 library sets the application name, and an initialization
 file can test for a particular value. This could be used
 to bind key sequences to functions useful for a specific
 program. For instance, the following command adds a key
 sequence that quotes the current or previous word in
 Bash:

 $if Bash
 # Quote the current or previous word
 "\C-xq": "\eb\"\ef\""
 $endif

 $endif This command, as seen in the previous example, terminates an $if

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 command.

 $else Commands in this branch of the $if directive are executed if the
 test fails.

 $include
 This directive takes a single filename as an argument and reads
 commands and bindings from that file. For example, the follow-
 ing directive would read /etc/inputrc:

 $include /etc/inputrc

 Searching
 Readline provides commands for searching through the command history
 (see HISTORY below) for lines containing a specified string. There are
 two search modes: incremental and non-incremental.

 Incremental searches begin before the user has finished typing the
 search string. As each character of the search string is typed, read-
 line displays the next entry from the history matching the string typed
 so far. An incremental search requires only as many characters as
 needed to find the desired history entry. The characters present in
 the value of the isearch-terminators variable are used to terminate an
 incremental search. If that variable has not been assigned a value the
 Escape and Control-J characters will terminate an incremental search.
 Control-G will abort an incremental search and restore the original
 line. When the search is terminated, the history entry containing the
 search string becomes the current line.

 To find other matching entries in the history list, type Control-S or
 Control-R as appropriate. This will search backward or forward in the
 history for the next entry matching the search string typed so far.
 Any other key sequence bound to a readline command will terminate the
 search and execute that command. For instance, a newline will termi-
 nate the search and accept the line, thereby executing the command from
 the history list.

 Readline remembers the last incremental search string. If two Control-
 Rs are typed without any intervening characters defining a new search
 string, any remembered search string is used.

 Non-incremental searches read the entire search string before starting
 to search for matching history lines. The search string may be typed
 by the user or be part of the contents of the current line.

 Readline Command Names
 The following is a list of the names of the commands and the default
 key sequences to which they are bound. Command names without an accom-
 panying key sequence are unbound by default. In the following descrip-
 tions, point refers to the current cursor position, and mark refers to

2024/05/30 18:18 53/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 a cursor position saved by the set-mark command. The text between the
 point and mark is referred to as the region.

 Commands for Moving
 beginning-of-line (C-a)
 Move to the start of the current line.
 end-of-line (C-e)
 Move to the end of the line.
 forward-char (C-f)
 Move forward a character.
 backward-char (C-b)
 Move back a character.
 forward-word (M-f)
 Move forward to the end of the next word. Words are composed of
 alphanumeric characters (letters and digits).
 backward-word (M-b)
 Move back to the start of the current or previous word. Words
 are composed of alphanumeric characters (letters and digits).
 clear-screen (C-l)
 Clear the screen leaving the current line at the top of the
 screen. With an argument, refresh the current line without
 clearing the screen.
 redraw-current-line
 Refresh the current line.

 Commands for Manipulating the History
 accept-line (Newline, Return)
 Accept the line regardless of where the cursor is. If this line
 is non-empty, add it to the history list according to the state
 of the HISTCONTROL variable. If the line is a modified history
 line, then restore the history line to its original state.
 previous-history (C-p)
 Fetch the previous command from the history list, moving back in
 the list.
 next-history (C-n)
 Fetch the next command from the history list, moving forward in
 the list.
 beginning-of-history (M-<)
 Move to the first line in the history.
 end-of-history (M->)
 Move to the end of the input history, i.e., the line currently
 being entered.
 reverse-search-history (C-r)
 Search backward starting at the current line and moving `up'
 through the history as necessary. This is an incremental
 search.
 forward-search-history (C-s)
 Search forward starting at the current line and moving `down'
 through the history as necessary. This is an incremental
 search.
 non-incremental-reverse-search-history (M-p)

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 Search backward through the history starting at the current line
 using a non-incremental search for a string supplied by the
 user.
 non-incremental-forward-search-history (M-n)
 Search forward through the history using a non-incremental
 search for a string supplied by the user.
 history-search-forward
 Search forward through the history for the string of characters
 between the start of the current line and the point. This is a
 non-incremental search.
 history-search-backward
 Search backward through the history for the string of characters
 between the start of the current line and the point. This is a
 non-incremental search.
 yank-nth-arg (M-C-y)
 Insert the first argument to the previous command (usually the
 second word on the previous line) at point. With an argument n,
 insert the nth word from the previous command (the words in the
 previous command begin with word 0). A negative argument
 inserts the nth word from the end of the previous command. Once
 the argument n is computed, the argument is extracted as if the
 "!n" history expansion had been specified.
 yank-last-arg (M-., M-_)
 Insert the last argument to the previous command (the last word
 of the previous history entry). With an argument, behave
 exactly like yank-nth-arg. Successive calls to yank-last-arg
 move back through the history list, inserting the last argument
 of each line in turn. The history expansion facilities are used
 to extract the last argument, as if the "!$" history expansion
 had been specified.
 shell-expand-line (M-C-e)
 Expand the line as the shell does. This performs alias and his-
 tory expansion as well as all of the shell word expansions. See
 HISTORY EXPANSION below for a description of history expansion.
 history-expand-line (M-^)
 Perform history expansion on the current line. See HISTORY
 EXPANSION below for a description of history expansion.
 magic-space
 Perform history expansion on the current line and insert a
 space. See HISTORY EXPANSION below for a description of history
 expansion.
 alias-expand-line
 Perform alias expansion on the current line. See ALIASES above
 for a description of alias expansion.
 history-and-alias-expand-line
 Perform history and alias expansion on the current line.
 insert-last-argument (M-., M-_)
 A synonym for yank-last-arg.
 operate-and-get-next (C-o)
 Accept the current line for execution and fetch the next line
 relative to the current line from the history for editing. Any

2024/05/30 18:18 55/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 argument is ignored.
 edit-and-execute-command (C-xC-e)
 Invoke an editor on the current command line, and execute the
 result as shell commands. Bash attempts to invoke $FCEDIT,
 $EDITOR, and emacs as the editor, in that order.

 Commands for Changing Text
 delete-char (C-d)
 Delete the character at point. If point is at the beginning of
 the line, there are no characters in the line, and the last
 character typed was not bound to delete-char, then return EOF.
 backward-delete-char (Rubout)
 Delete the character behind the cursor. When given a numeric
 argument, save the deleted text on the kill ring.
 forward-backward-delete-char
 Delete the character under the cursor, unless the cursor is at
 the end of the line, in which case the character behind the cur-
 sor is deleted.
 quoted-insert (C-q, C-v)
 Add the next character typed to the line verbatim. This is how
 to insert characters like C-q, for example.
 tab-insert (C-v TAB)
 Insert a tab character.
 self-insert (a, b, A, 1, !, ...)
 Insert the character typed.
 transpose-chars (C-t)
 Drag the character before point forward over the character at
 point, moving point forward as well. If point is at the end of
 the line, then this transposes the two characters before point.
 Negative arguments have no effect.
 transpose-words (M-t)
 Drag the word before point past the word after point, moving
 point over that word as well. If point is at the end of the
 line, this transposes the last two words on the line.
 upcase-word (M-u)
 Uppercase the current (or following) word. With a negative
 argument, uppercase the previous word, but do not move point.
 downcase-word (M-l)
 Lowercase the current (or following) word. With a negative
 argument, lowercase the previous word, but do not move point.
 capitalize-word (M-c)
 Capitalize the current (or following) word. With a negative
 argument, capitalize the previous word, but do not move point.
 overwrite-mode
 Toggle overwrite mode. With an explicit positive numeric argu-
 ment, switches to overwrite mode. With an explicit non-positive
 numeric argument, switches to insert mode. This command affects
 only emacs mode; vi mode does overwrite differently. Each call
 to readline() starts in insert mode. In overwrite mode, charac-
 ters bound to self-insert replace the text at point rather than
 pushing the text to the right. Characters bound to back-

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 ward-delete-char replace the character before point with a
 space. By default, this command is unbound.

 Killing and Yanking
 kill-line (C-k)
 Kill the text from point to the end of the line.
 backward-kill-line (C-x Rubout)
 Kill backward to the beginning of the line.
 unix-line-discard (C-u)
 Kill backward from point to the beginning of the line. The
 killed text is saved on the kill-ring.
 kill-whole-line
 Kill all characters on the current line, no matter where point
 is.
 kill-word (M-d)
 Kill from point to the end of the current word, or if between
 words, to the end of the next word. Word boundaries are the
 same as those used by forward-word.
 backward-kill-word (M-Rubout)
 Kill the word behind point. Word boundaries are the same as
 those used by backward-word.
 unix-word-rubout (C-w)
 Kill the word behind point, using white space as a word bound-
 ary. The killed text is saved on the kill-ring.
 unix-filename-rubout
 Kill the word behind point, using white space and the slash
 character as the word boundaries. The killed text is saved on
 the kill-ring.
 delete-horizontal-space (M-\)
 Delete all spaces and tabs around point.
 kill-region
 Kill the text in the current region.
 copy-region-as-kill
 Copy the text in the region to the kill buffer.
 copy-backward-word
 Copy the word before point to the kill buffer. The word bound-
 aries are the same as backward-word.
 copy-forward-word
 Copy the word following point to the kill buffer. The word
 boundaries are the same as forward-word.
 yank (C-y)
 Yank the top of the kill ring into the buffer at point.
 yank-pop (M-y)
 Rotate the kill ring, and yank the new top. Only works follow-
 ing yank or yank-pop.

 Numeric Arguments
 digit-argument (M-0, M-1, ..., M--)
 Add this digit to the argument already accumulating, or start a
 new argument. M-- starts a negative argument.
 universal-argument

2024/05/30 18:18 57/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 This is another way to specify an argument. If this command is
 followed by one or more digits, optionally with a leading minus
 sign, those digits define the argument. If the command is fol-
 lowed by digits, executing universal-argument again ends the
 numeric argument, but is otherwise ignored. As a special case,
 if this command is immediately followed by a character that is
 neither a digit or minus sign, the argument count for the next
 command is multiplied by four. The argument count is initially
 one, so executing this function the first time makes the argu-
 ment count four, a second time makes the argument count sixteen,
 and so on.

 Completing
 complete (TAB)
 Attempt to perform completion on the text before point. Bash
 attempts completion treating the text as a variable (if the text
 begins with $), username (if the text begins with ~), hostname
 (if the text begins with @), or command (including aliases and
 functions) in turn. If none of these produces a match, filename
 completion is attempted.
 possible-completions (M-?)
 List the possible completions of the text before point.
 insert-completions (M-*)
 Insert all completions of the text before point that would have
 been generated by possible-completions.
 menu-complete
 Similar to complete, but replaces the word to be completed with
 a single match from the list of possible completions. Repeated
 execution of menu-complete steps through the list of possible
 completions, inserting each match in turn. At the end of the
 list of completions, the bell is rung (subject to the setting of
 bell-style) and the original text is restored. An argument of n
 moves n positions forward in the list of matches; a negative
 argument may be used to move backward through the list. This
 command is intended to be bound to TAB, but is unbound by
 default.
 delete-char-or-list
 Deletes the character under the cursor if not at the beginning
 or end of the line (like delete-char). If at the end of the
 line, behaves identically to possible-completions. This command
 is unbound by default.
 complete-filename (M-/)
 Attempt filename completion on the text before point.
 possible-filename-completions (C-x /)
 List the possible completions of the text before point, treating
 it as a filename.
 complete-username (M-~)
 Attempt completion on the text before point, treating it as a
 username.
 possible-username-completions (C-x ~)
 List the possible completions of the text before point, treating

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 it as a username.
 complete-variable (M-$)
 Attempt completion on the text before point, treating it as a
 shell variable.
 possible-variable-completions (C-x $)
 List the possible completions of the text before point, treating
 it as a shell variable.
 complete-hostname (M-@)
 Attempt completion on the text before point, treating it as a
 hostname.
 possible-hostname-completions (C-x @)
 List the possible completions of the text before point, treating
 it as a hostname.
 complete-command (M-!)
 Attempt completion on the text before point, treating it as a
 command name. Command completion attempts to match the text
 against aliases, reserved words, shell functions, shell
 builtins, and finally executable filenames, in that order.
 possible-command-completions (C-x !)
 List the possible completions of the text before point, treating
 it as a command name.
 dynamic-complete-history (M-TAB)
 Attempt completion on the text before point, comparing the text
 against lines from the history list for possible completion
 matches.
 complete-into-braces (M-{)
 Perform filename completion and insert the list of possible com-
 pletions enclosed within braces so the list is available to the
 shell (see Brace Expansion above).

 Keyboard Macros
 start-kbd-macro (C-x ()
 Begin saving the characters typed into the current keyboard
 macro.
 end-kbd-macro (C-x))
 Stop saving the characters typed into the current keyboard macro
 and store the definition.
 call-last-kbd-macro (C-x e)
 Re-execute the last keyboard macro defined, by making the char-
 acters in the macro appear as if typed at the keyboard.

 Miscellaneous
 re-read-init-file (C-x C-r)
 Read in the contents of the inputrc file, and incorporate any
 bindings or variable assignments found there.
 abort (C-g)
 Abort the current editing command and ring the terminal's bell
 (subject to the setting of bell-style).
 do-uppercase-version (M-a, M-b, M-x, ...)
 If the metafied character x is lowercase, run the command that
 is bound to the corresponding uppercase character.

2024/05/30 18:18 59/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 prefix-meta (ESC)
 Metafy the next character typed. ESC f is equivalent to Meta-f.
 undo (C-_, C-x C-u)
 Incremental undo, separately remembered for each line.
 revert-line (M-r)
 Undo all changes made to this line. This is like executing the
 undo command enough times to return the line to its initial
 state.
 tilde-expand (M-&)
 Perform tilde expansion on the current word.
 set-mark (C-@, M-<space>)
 Set the mark to the point. If a numeric argument is supplied,
 the mark is set to that position.
 exchange-point-and-mark (C-x C-x)
 Swap the point with the mark. The current cursor position is
 set to the saved position, and the old cursor position is saved
 as the mark.
 character-search (C-])
 A character is read and point is moved to the next occurrence of
 that character. A negative count searches for previous occur-
 rences.
 character-search-backward (M-C-])
 A character is read and point is moved to the previous occur-
 rence of that character. A negative count searches for subse-
 quent occurrences.
 insert-comment (M-#)
 Without a numeric argument, the value of the readline com-
 ment-begin variable is inserted at the beginning of the current
 line. If a numeric argument is supplied, this command acts as a
 toggle: if the characters at the beginning of the line do not
 match the value of comment-begin, the value is inserted, other-
 wise the characters in comment-begin are deleted from the begin-
 ning of the line. In either case, the line is accepted as if a
 newline had been typed. The default value of comment-begin
 causes this command to make the current line a shell comment.
 If a numeric argument causes the comment character to be
 removed, the line will be executed by the shell.
 glob-complete-word (M-g)
 The word before point is treated as a pattern for pathname
 expansion, with an asterisk implicitly appended. This pattern
 is used to generate a list of matching file names for possible
 completions.
 glob-expand-word (C-x *)
 The word before point is treated as a pattern for pathname
 expansion, and the list of matching file names is inserted,
 replacing the word. If a numeric argument is supplied, an
 asterisk is appended before pathname expansion.
 glob-list-expansions (C-x g)
 The list of expansions that would have been generated by
 glob-expand-word is displayed, and the line is redrawn. If a
 numeric argument is supplied, an asterisk is appended before

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 pathname expansion.
 dump-functions
 Print all of the functions and their key bindings to the read-
 line output stream. If a numeric argument is supplied, the out-
 put is formatted in such a way that it can be made part of an
 inputrc file.
 dump-variables
 Print all of the settable readline variables and their values to
 the readline output stream. If a numeric argument is supplied,
 the output is formatted in such a way that it can be made part
 of an inputrc file.
 dump-macros
 Print all of the readline key sequences bound to macros and the
 strings they output. If a numeric argument is supplied, the
 output is formatted in such a way that it can be made part of an
 inputrc file.
 display-shell-version (C-x C-v)
 Display version information about the current instance of bash.

 Programmable Completion
 When word completion is attempted for an argument to a command for
 which a completion specification (a compspec) has been defined using
 the complete builtin (see SHELL BUILTIN COMMANDS below), the pro-
 grammable completion facilities are invoked.

 First, the command name is identified. If a compspec has been defined
 for that command, the compspec is used to generate the list of possible
 completions for the word. If the command word is a full pathname, a
 compspec for the full pathname is searched for first. If no compspec
 is found for the full pathname, an attempt is made to find a compspec
 for the portion following the final slash.

 Once a compspec has been found, it is used to generate the list of
 matching words. If a compspec is not found, the default bash comple-
 tion as described above under Completing is performed.

 First, the actions specified by the compspec are used. Only matches
 which are prefixed by the word being completed are returned. When the
 -f or -d option is used for filename or directory name completion, the
 shell variable FIGNORE is used to filter the matches.

 Any completions specified by a filename expansion pattern to the -G
 option are generated next. The words generated by the pattern need not
 match the word being completed. The GLOBIGNORE shell variable is not
 used to filter the matches, but the FIGNORE variable is used.

 Next, the string specified as the argument to the -W option is consid-
 ered. The string is first split using the characters in the IFS spe-
 cial variable as delimiters. Shell quoting is honored. Each word is
 then expanded using brace expansion, tilde expansion, parameter and

2024/05/30 18:18 61/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 variable expansion, command substitution, and arithmetic expansion, as
 described above under EXPANSION. The results are split using the rules
 described above under Word Splitting. The results of the expansion are
 prefix-matched against the word being completed, and the matching words
 become the possible completions.

 After these matches have been generated, any shell function or command
 specified with the -F and -C options is invoked. When the command or
 function is invoked, the COMP_LINE and COMP_POINT variables are
 assigned values as described above under Shell Variables. If a shell
 function is being invoked, the COMP_WORDS and COMP_CWORD variables are
 also set. When the function or command is invoked, the first argument
 is the name of the command whose arguments are being completed, the
 second argument is the word being completed, and the third argument is
 the word preceding the word being completed on the current command
 line. No filtering of the generated completions against the word being
 completed is performed; the function or command has complete freedom in
 generating the matches.

 Any function specified with -F is invoked first. The function may use
 any of the shell facilities, including the compgen builtin described
 below, to generate the matches. It must put the possible completions
 in the COMPREPLY array variable.

 Next, any command specified with the -C option is invoked in an envi-
 ronment equivalent to command substitution. It should print a list of
 completions, one per line, to the standard output. Backslash may be
 used to escape a newline, if necessary.

 After all of the possible completions are generated, any filter speci-
 fied with the -X option is applied to the list. The filter is a pat-
 tern as used for pathname expansion; a & in the pattern is replaced
 with the text of the word being completed. A literal & may be escaped
 with a backslash; the backslash is removed before attempting a match.
 Any completion that matches the pattern will be removed from the list.
 A leading ! negates the pattern; in this case any completion not match-
 ing the pattern will be removed.

 Finally, any prefix and suffix specified with the -P and -S options are
 added to each member of the completion list, and the result is returned
 to the readline completion code as the list of possible completions.

 If the previously-applied actions do not generate any matches, and the
 -o dirnames option was supplied to complete when the compspec was
 defined, directory name completion is attempted.

 If the -o plusdirs option was supplied to complete when the compspec
 was defined, directory name completion is attempted and any matches are
 added to the results of the other actions.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 By default, if a compspec is found, whatever it generates is returned
 to the completion code as the full set of possible completions. The
 default bash completions are not attempted, and the readline default of
 filename completion is disabled. If the -o bashdefault option was sup-
 plied to complete when the compspec was defined, the bash default com-
 pletions are attempted if the compspec generates no matches. If the -o
 default option was supplied to complete when the compspec was defined,
 readline's default completion will be performed if the compspec (and,
 if attempted, the default bash completions) generate no matches.

 When a compspec indicates that directory name completion is desired,
 the programmable completion functions force readline to append a slash
 to completed names which are symbolic links to directories, subject to
 the value of the mark-directories readline variable, regardless of the
 setting of the mark-symlinked-directories readline variable.

HISTORY

 When the -o history option to the set builtin is enabled, the shell
 provides access to the command history, the list of commands previously
 typed. The value of the HISTSIZE variable is used as the number of
 commands to save in a history list. The text of the last HISTSIZE com-
 mands (default 500) is saved. The shell stores each command in the
 history list prior to parameter and variable expansion (see EXPANSION
 above) but after history expansion is performed, subject to the values
 of the shell variables HISTIGNORE and HISTCONTROL.

 On startup, the history is initialized from the file named by the vari-
 able HISTFILE (default ~/.bash_history). The file named by the value
 of HISTFILE is truncated, if necessary, to contain no more than the
 number of lines specified by the value of HISTFILESIZE. When an inter-
 active shell exits, the last $HISTSIZE lines are copied from the his-
 tory list to $HISTFILE. If the histappend shell option is enabled (see
 the description of shopt under SHELL BUILTIN COMMANDS below), the lines
 are appended to the history file, otherwise the history file is over-
 written. If HISTFILE is unset, or if the history file is unwritable,
 the history is not saved. After saving the history, the history file
 is truncated to contain no more than HISTFILESIZE lines. If HISTFILE-
 SIZE is not set, no truncation is performed.

 The builtin command fc (see SHELL BUILTIN COMMANDS below) may be used
 to list or edit and re-execute a portion of the history list. The his-
 tory builtin may be used to display or modify the history list and
 manipulate the history file. When using command-line editing, search
 commands are available in each editing mode that provide access to the
 history list.

 The shell allows control over which commands are saved on the history
 list. The HISTCONTROL and HISTIGNORE variables may be set to cause the
 shell to save only a subset of the commands entered. The cmdhist shell

2024/05/30 18:18 63/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 option, if enabled, causes the shell to attempt to save each line of a
 multi-line command in the same history entry, adding semicolons where
 necessary to preserve syntactic correctness. The lithist shell option
 causes the shell to save the command with embedded newlines instead of
 semicolons. See the description of the shopt builtin below under SHELL
 BUILTIN COMMANDS for information on setting and unsetting shell
 options.

HISTORY EXPANSION

 The shell supports a history expansion feature that is similar to the
 history expansion in csh. This section describes what syntax features
 are available. This feature is enabled by default for interactive
 shells, and can be disabled using the +H option to the set builtin com-
 mand (see SHELL BUILTIN COMMANDS below). Non-interactive shells do not
 perform history expansion by default.

 History expansions introduce words from the history list into the input
 stream, making it easy to repeat commands, insert the arguments to a
 previous command into the current input line, or fix errors in previous
 commands quickly.

 History expansion is performed immediately after a complete line is
 read, before the shell breaks it into words. It takes place in two
 parts. The first is to determine which line from the history list to
 use during substitution. The second is to select portions of that line
 for inclusion into the current one. The line selected from the history
 is the event, and the portions of that line that are acted upon are
 words. Various modifiers are available to manipulate the selected
 words. The line is broken into words in the same fashion as when read-
 ing input, so that several metacharacter-separated words surrounded by
 quotes are considered one word. History expansions are introduced by
 the appearance of the history expansion character, which is ! by
 default. Only backslash (\) and single quotes can quote the history
 expansion character.

 Several characters inhibit history expansion if found immediately fol-
 lowing the history expansion character, even if it is unquoted: space,
 tab, newline, carriage return, and =. If the extglob shell option is
 enabled, (will also inhibit expansion.

 Several shell options settable with the shopt builtin may be used to
 tailor the behavior of history expansion. If the histverify shell
 option is enabled (see the description of the shopt builtin), and read-
 line is being used, history substitutions are not immediately passed to
 the shell parser. Instead, the expanded line is reloaded into the
 readline editing buffer for further modification. If readline is being
 used, and the histreedit shell option is enabled, a failed history sub-
 stitution will be reloaded into the readline editing buffer for correc-
 tion. The -p option to the history builtin command may be used to see
 what a history expansion will do before using it. The -s option to the

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 history builtin may be used to add commands to the end of the history
 list without actually executing them, so that they are available for
 subsequent recall.

 The shell allows control of the various characters used by the history
 expansion mechanism (see the description of histchars above under Shell
 Variables).

 Event Designators
 An event designator is a reference to a command line entry in the his-
 tory list.

 ! Start a history substitution, except when followed by a blank,
 newline, carriage return, = or ((when the extglob shell option
 is enabled using the shopt builtin).
 !n Refer to command line n.
 !-n Refer to the current command line minus n.
 !! Refer to the previous command. This is a synonym for `!-1'.
 !string
 Refer to the most recent command starting with string.
 !?string[?]
 Refer to the most recent command containing string. The trail-
 ing ? may be omitted if string is followed immediately by a new-
 line.
 ^string1^string2^
 Quick substitution. Repeat the last command, replacing string1
 with string2. Equivalent to ``!!:s/string1/string2/'' (see Mod-
 ifiers below).
 !# The entire command line typed so far.

 Word Designators
 Word designators are used to select desired words from the event. A :
 separates the event specification from the word designator. It may be
 omitted if the word designator begins with a ^, $, *, -, or %. Words
 are numbered from the beginning of the line, with the first word being
 denoted by 0 (zero). Words are inserted into the current line sepa-
 rated by single spaces.

 0 (zero)
 The zeroth word. For the shell, this is the command word.
 n The nth word.
 ^ The first argument. That is, word 1.
 $ The last argument.
 % The word matched by the most recent `?string?' search.
 x-y A range of words; `-y' abbreviates `0-y'.
 * All of the words but the zeroth. This is a synonym for `1-$'.
 It is not an error to use * if there is just one word in the
 event; the empty string is returned in that case.
 x* Abbreviates x-$.
 x- Abbreviates x-$ like x*, but omits the last word.

2024/05/30 18:18 65/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 If a word designator is supplied without an event specification, the
 previous command is used as the event.

 Modifiers
 After the optional word designator, there may appear a sequence of one
 or more of the following modifiers, each preceded by a `:'.

 h Remove a trailing file name component, leaving only the head.
 t Remove all leading file name components, leaving the tail.
 r Remove a trailing suffix of the form .xxx, leaving the basename.
 e Remove all but the trailing suffix.
 p Print the new command but do not execute it.
 q Quote the substituted words, escaping further substitutions.
 x Quote the substituted words as with q, but break into words at
 blanks and newlines.
 s/old/new/
 Substitute new for the first occurrence of old in the event
 line. Any delimiter can be used in place of /. The final
 delimiter is optional if it is the last character of the event
 line. The delimiter may be quoted in old and new with a single
 backslash. If & appears in new, it is replaced by old. A sin-
 gle backslash will quote the &. If old is null, it is set to
 the last old substituted, or, if no previous history substitu-
 tions took place, the last string in a !?string[?] search.
 & Repeat the previous substitution.
 g Cause changes to be applied over the entire event line. This is
 used in conjunction with `:s' (e.g., `:gs/old/new/') or `:&'.
 If used with `:s', any delimiter can be used in place of /, and
 the final delimiter is optional if it is the last character of
 the event line. An a may be used as a synonym for g.
 G Apply the following `s' modifier once to each word in the event
 line.

SHELL BUILTIN COMMANDS

 Unless otherwise noted, each builtin command documented in this section
 as accepting options preceded by - accepts -- to signify the end of the
 options. For example, the :, true, false, and test builtins do not
 accept options.
 : [arguments]
 No effect; the command does nothing beyond expanding arguments
 and performing any specified redirections. A zero exit code is
 returned.

 . filename [arguments]
 source filename [arguments]
 Read and execute commands from filename in the current shell
 environment and return the exit status of the last command exe-
 cuted from filename. If filename does not contain a slash, file
 names in PATH are used to find the directory containing file-

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 name. The file searched for in PATH need not be executable.
 When bash is not in posix mode, the current directory is
 searched if no file is found in PATH. If the sourcepath option
 to the shopt builtin command is turned off, the PATH is not
 searched. If any arguments are supplied, they become the posi-
 tional parameters when filename is executed. Otherwise the
 positional parameters are unchanged. The return status is the
 status of the last command exited within the script (0 if no
 commands are executed), and false if filename is not found or
 cannot be read.

 alias [-p] [name[=value] ...]
 Alias with no arguments or with the -p option prints the list of
 aliases in the form alias name=value on standard output. When
 arguments are supplied, an alias is defined for each name whose
 value is given. A trailing space in value causes the next word
 to be checked for alias substitution when the alias is expanded.
 For each name in the argument list for which no value is sup-
 plied, the name and value of the alias is printed. Alias
 returns true unless a name is given for which no alias has been
 defined.

 bg [jobspec ...]
 Resume each suspended job jobspec in the background, as if it
 had been started with &. If jobspec is not present, the shell's
 notion of the current job is used. bg jobspec returns 0 unless
 run when job control is disabled or, when run with job control
 enabled, any specified jobspec was not found or was started
 without job control.

 bind [-m keymap] [-lpsvPSV]
 bind [-m keymap] [-q function] [-u function] [-r keyseq]
 bind [-m keymap] -f filename
 bind [-m keymap] -x keyseq:shell-command
 bind [-m keymap] keyseq:function-name
 bind readline-command
 Display current readline key and function bindings, bind a key
 sequence to a readline function or macro, or set a readline
 variable. Each non-option argument is a command as it would
 appear in .inputrc, but each binding or command must be passed
 as a separate argument; e.g., '"\C-x\C-r": re-read-init-file'.
 Options, if supplied, have the following meanings:
 -m keymap
 Use keymap as the keymap to be affected by the subsequent
 bindings. Acceptable keymap names are emacs, emacs-stan-
 dard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command,
 and vi-insert. vi is equivalent to vi-command; emacs is
 equivalent to emacs-standard.
 -l List the names of all readline functions.
 -p Display readline function names and bindings in such a
 way that they can be re-read.

2024/05/30 18:18 67/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 -P List current readline function names and bindings.
 -v Display readline variable names and values in such a way
 that they can be re-read.
 -V List current readline variable names and values.
 -s Display readline key sequences bound to macros and the
 strings they output in such a way that they can be re-
 read.
 -S Display readline key sequences bound to macros and the
 strings they output.
 -f filename
 Read key bindings from filename.
 -q function
 Query about which keys invoke the named function.
 -u function
 Unbind all keys bound to the named function.
 -r keyseq
 Remove any current binding for keyseq.
 -x keyseq:shell-command
 Cause shell-command to be executed whenever keyseq is
 entered.

 The return value is 0 unless an unrecognized option is given or
 an error occurred.

 break [n]
 Exit from within a for, while, until, or select loop. If n is
 specified, break n levels. n must be >= 1. If n is greater
 than the number of enclosing loops, all enclosing loops are
 exited. The return value is 0 unless the shell is not executing
 a loop when break is executed.

 builtin shell-builtin [arguments]
 Execute the specified shell builtin, passing it arguments, and
 return its exit status. This is useful when defining a function
 whose name is the same as a shell builtin, retaining the func-
 tionality of the builtin within the function. The cd builtin is
 commonly redefined this way. The return status is false if
 shell-builtin is not a shell builtin command.

 cd [-L|-P] [dir]
 Change the current directory to dir. The variable HOME is the
 default dir. The variable CDPATH defines the search path for
 the directory containing dir. Alternative directory names in
 CDPATH are separated by a colon (:). A null directory name in
 CDPATH is the same as the current directory, i.e., ``.''. If
 dir begins with a slash (/), then CDPATH is not used. The -P
 option says to use the physical directory structure instead of
 following symbolic links (see also the -P option to the set
 builtin command); the -L option forces symbolic links to be fol-
 lowed. An argument of - is equivalent to $OLDPWD. If a non-
 empty directory name from CDPATH is used, or if - is the first

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 argument, and the directory change is successful, the absolute
 pathname of the new working directory is written to the standard
 output. The return value is true if the directory was success-
 fully changed; false otherwise.

 caller [expr]
 Returns the context of any active subroutine call (a shell func-
 tion or a script executed with the . or source builtins. With-
 out expr, caller displays the line number and source filename of
 the current subroutine call. If a non-negative integer is sup-
 plied as expr, caller displays the line number, subroutine name,
 and source file corresponding to that position in the current
 execution call stack. This extra information may be used, for
 example, to print a stack trace. The current frame is frame 0.
 The return value is 0 unless the shell is not executing a sub-
 routine call or expr does not correspond to a valid position in
 the call stack.

 command [-pVv] command [arg ...]
 Run command with args suppressing the normal shell function
 lookup. Only builtin commands or commands found in the PATH are
 executed. If the -p option is given, the search for command is
 performed using a default value for PATH that is guaranteed to
 find all of the standard utilities. If either the -V or -v
 option is supplied, a description of command is printed. The -v
 option causes a single word indicating the command or file name
 used to invoke command to be displayed; the -V option produces a
 more verbose description. If the -V or -v option is supplied,
 the exit status is 0 if command was found, and 1 if not. If
 neither option is supplied and an error occurred or command can-
 not be found, the exit status is 127. Otherwise, the exit sta-
 tus of the command builtin is the exit status of command.

 compgen [option] [word]
 Generate possible completion matches for word according to the
 options, which may be any option accepted by the complete
 builtin with the exception of -p and -r, and write the matches
 to the standard output. When using the -F or -C options, the
 various shell variables set by the programmable completion
 facilities, while available, will not have useful values.

 The matches will be generated in the same way as if the pro-
 grammable completion code had generated them directly from a
 completion specification with the same flags. If word is speci-
 fied, only those completions matching word will be displayed.

 The return value is true unless an invalid option is supplied,
 or no matches were generated.

 complete [-abcdefgjksuv] [-o comp-option] [-A action] [-G globpat] [-W

2024/05/30 18:18 69/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 wordlist] [-P prefix] [-S suffix]
 [-X filterpat] [-F function] [-C command] name [name ...]
 complete -pr [name ...]
 Specify how arguments to each name should be completed. If the
 -p option is supplied, or if no options are supplied, existing
 completion specifications are printed in a way that allows them
 to be reused as input. The -r option removes a completion spec-
 ification for each name, or, if no names are supplied, all com-
 pletion specifications.

 The process of applying these completion specifications when
 word completion is attempted is described above under Pro-
 grammable Completion.

 Other options, if specified, have the following meanings. The
 arguments to the -G, -W, and -X options (and, if necessary, the
 -P and -S options) should be quoted to protect them from expan-
 sion before the complete builtin is invoked.
 -o comp-option
 The comp-option controls several aspects of the comp-
 spec's behavior beyond the simple generation of comple-
 tions. comp-option may be one of:
 bashdefault
 Perform the rest of the default bash completions
 if the compspec generates no matches.
 default Use readline's default filename completion if
 the compspec generates no matches.
 dirnames
 Perform directory name completion if the comp-
 spec generates no matches.
 filenames
 Tell readline that the compspec generates file-
 names, so it can perform any filename-specific
 processing (like adding a slash to directory
 names or suppressing trailing spaces). Intended
 to be used with shell functions.
 nospace Tell readline not to append a space (the
 default) to words completed at the end of the
 line.
 plusdirs
 After any matches defined by the compspec are
 generated, directory name completion is
 attempted and any matches are added to the
 results of the other actions.
 -A action
 The action may be one of the following to generate a
 list of possible completions:
 alias Alias names. May also be specified as -a.
 arrayvar
 Array variable names.
 binding Readline key binding names.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 builtin Names of shell builtin commands. May also be
 specified as -b.
 command Command names. May also be specified as -c.
 directory
 Directory names. May also be specified as -d.
 disabled
 Names of disabled shell builtins.
 enabled Names of enabled shell builtins.
 export Names of exported shell variables. May also be
 specified as -e.
 file File names. May also be specified as -f.
 function
 Names of shell functions.
 group Group names. May also be specified as -g.
 helptopic
 Help topics as accepted by the help builtin.
 hostname
 Hostnames, as taken from the file specified by
 the HOSTFILE shell variable.
 job Job names, if job control is active. May also
 be specified as -j.
 keyword Shell reserved words. May also be specified as
 -k.
 running Names of running jobs, if job control is active.
 service Service names. May also be specified as -s.
 setopt Valid arguments for the -o option to the set
 builtin.
 shopt Shell option names as accepted by the shopt
 builtin.
 signal Signal names.
 stopped Names of stopped jobs, if job control is active.
 user User names. May also be specified as -u.
 variable
 Names of all shell variables. May also be spec-
 ified as -v.
 -G globpat
 The filename expansion pattern globpat is expanded to
 generate the possible completions.
 -W wordlist
 The wordlist is split using the characters in the IFS
 special variable as delimiters, and each resultant word
 is expanded. The possible completions are the members
 of the resultant list which match the word being com-
 pleted.
 -C command
 command is executed in a subshell environment, and its
 output is used as the possible completions.
 -F function
 The shell function function is executed in the current
 shell environment. When it finishes, the possible com-
 pletions are retrieved from the value of the COMPREPLY

2024/05/30 18:18 71/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 array variable.
 -X filterpat
 filterpat is a pattern as used for filename expansion.
 It is applied to the list of possible completions gener-
 ated by the preceding options and arguments, and each
 completion matching filterpat is removed from the list.
 A leading ! in filterpat negates the pattern; in this
 case, any completion not matching filterpat is removed.
 -P prefix
 prefix is added at the beginning of each possible com-
 pletion after all other options have been applied.
 -S suffix
 suffix is appended to each possible completion after all
 other options have been applied.

 The return value is true unless an invalid option is supplied,
 an option other than -p or -r is supplied without a name argu-
 ment, an attempt is made to remove a completion specification
 for a name for which no specification exists, or an error occurs
 adding a completion specification.

 continue [n]
 Resume the next iteration of the enclosing for, while, until, or
 select loop. If n is specified, resume at the nth enclosing
 loop. n must be >= 1. If n is greater than the number of
 enclosing loops, the last enclosing loop (the ``top-level''
 loop) is resumed. The return value is 0 unless the shell is not
 executing a loop when continue is executed.

 declare [-afFirtx] [-p] [name[=value] ...]
 typeset [-afFirtx] [-p] [name[=value] ...]
 Declare variables and/or give them attributes. If no names are
 given then display the values of variables. The -p option will
 display the attributes and values of each name. When -p is
 used, additional options are ignored. The -F option inhibits
 the display of function definitions; only the function name and
 attributes are printed. If the extdebug shell option is enabled
 using shopt, the source file name and line number where the
 function is defined are displayed as well. The -F option
 implies -f. The following options can be used to restrict out-
 put to variables with the specified attribute or to give vari-
 ables attributes:
 -a Each name is an array variable (see Arrays above).
 -f Use function names only.
 -i The variable is treated as an integer; arithmetic evalua-
 tion (see ARITHMETIC EVALUATION) is performed when the
 variable is assigned a value.
 -r Make names readonly. These names cannot then be assigned
 values by subsequent assignment statements or unset.
 -t Give each name the trace attribute. Traced functions
 inherit the DEBUG and RETURN traps from the calling

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 shell. The trace attribute has no special meaning for
 variables.
 -x Mark names for export to subsequent commands via the
 environment.

 Using `+' instead of `-' turns off the attribute instead, with
 the exception that +a may not be used to destroy an array vari-
 able. When used in a function, makes each name local, as with
 the local command. If a variable name is followed by =value,
 the value of the variable is set to value. The return value is
 0 unless an invalid option is encountered, an attempt is made to
 define a function using ``-f foo=bar'', an attempt is made to
 assign a value to a readonly variable, an attempt is made to
 assign a value to an array variable without using the compound
 assignment syntax (see Arrays above), one of the names is not a
 valid shell variable name, an attempt is made to turn off read-
 only status for a readonly variable, an attempt is made to turn
 off array status for an array variable, or an attempt is made to
 display a non-existent function with -f.

 dirs [-clpv] [+n] [-n]
 Without options, displays the list of currently remembered
 directories. The default display is on a single line with
 directory names separated by spaces. Directories are added to
 the list with the pushd command; the popd command removes
 entries from the list.
 +n Displays the nth entry counting from the left of the list
 shown by dirs when invoked without options, starting with
 zero.
 -n Displays the nth entry counting from the right of the
 list shown by dirs when invoked without options, starting
 with zero.
 -c Clears the directory stack by deleting all of the
 entries.
 -l Produces a longer listing; the default listing format
 uses a tilde to denote the home directory.
 -p Print the directory stack with one entry per line.
 -v Print the directory stack with one entry per line, pre-
 fixing each entry with its index in the stack.

 The return value is 0 unless an invalid option is supplied or n
 indexes beyond the end of the directory stack.

 disown [-ar] [-h] [jobspec ...]
 Without options, each jobspec is removed from the table of
 active jobs. If the -h option is given, each jobspec is not
 removed from the table, but is marked so that SIGHUP is not sent
 to the job if the shell receives a SIGHUP. If no jobspec is
 present, and neither the -a nor the -r option is supplied, the
 current job is used. If no jobspec is supplied, the -a option
 means to remove or mark all jobs; the -r option without a job-

2024/05/30 18:18 73/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 spec argument restricts operation to running jobs. The return
 value is 0 unless a jobspec does not specify a valid job.

 echo [-neE] [arg ...]
 Output the args, separated by spaces, followed by a newline.
 The return status is always 0. If -n is specified, the trailing
 newline is suppressed. If the -e option is given, interpreta-
 tion of the following backslash-escaped characters is enabled.
 The -E option disables the interpretation of these escape char-
 acters, even on systems where they are interpreted by default.
 The xpg_echo shell option may be used to dynamically determine
 whether or not echo expands these escape characters by default.
 echo does not interpret -- to mean the end of options. echo
 interprets the following escape sequences:
 \a alert (bell)
 \b backspace
 \c suppress trailing newline
 \e an escape character
 \f form feed
 \n new line
 \r carriage return
 \t horizontal tab
 \v vertical tab
 \\ backslash
 \0nnn the eight-bit character whose value is the octal value
 nnn (zero to three octal digits)
 \xHH the eight-bit character whose value is the hexadecimal
 value HH (one or two hex digits)

 enable [-adnps] [-f filename] [name ...]
 Enable and disable builtin shell commands. Disabling a builtin
 allows a disk command which has the same name as a shell builtin
 to be executed without specifying a full pathname, even though
 the shell normally searches for builtins before disk commands.
 If -n is used, each name is disabled; otherwise, names are
 enabled. For example, to use the test binary found via the PATH
 instead of the shell builtin version, run ``enable -n test''.
 The -f option means to load the new builtin command name from
 shared object filename, on systems that support dynamic loading.
 The -d option will delete a builtin previously loaded with -f.
 If no name arguments are given, or if the -p option is supplied,
 a list of shell builtins is printed. With no other option argu-
 ments, the list consists of all enabled shell builtins. If -n
 is supplied, only disabled builtins are printed. If -a is sup-
 plied, the list printed includes all builtins, with an indica-
 tion of whether or not each is enabled. If -s is supplied, the
 output is restricted to the POSIX special builtins. The return
 value is 0 unless a name is not a shell builtin or there is an
 error loading a new builtin from a shared object.

 eval [arg ...]

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 The args are read and concatenated together into a single com-
 mand. This command is then read and executed by the shell, and
 its exit status is returned as the value of eval. If there are
 no args, or only null arguments, eval returns 0.

 exec [-cl] [-a name] [command [arguments]]
 If command is specified, it replaces the shell. No new process
 is created. The arguments become the arguments to command. If
 the -l option is supplied, the shell places a dash at the begin-
 ning of the zeroth arg passed to command. This is what login(1)
 does. The -c option causes command to be executed with an empty
 environment. If -a is supplied, the shell passes name as the
 zeroth argument to the executed command. If command cannot be
 executed for some reason, a non-interactive shell exits, unless
 the shell option execfail is enabled, in which case it returns
 failure. An interactive shell returns failure if the file can-
 not be executed. If command is not specified, any redirections
 take effect in the current shell, and the return status is 0.
 If there is a redirection error, the return status is 1.

 exit [n]
 Cause the shell to exit with a status of n. If n is omitted,
 the exit status is that of the last command executed. A trap on
 EXIT is executed before the shell terminates.

 export [-fn] [name[=word]] ...
 export -p
 The supplied names are marked for automatic export to the envi-
 ronment of subsequently executed commands. If the -f option is
 given, the names refer to functions. If no names are given, or
 if the -p option is supplied, a list of all names that are
 exported in this shell is printed. The -n option causes the
 export property to be removed from each name. If a variable
 name is followed by =word, the value of the variable is set to
 word. export returns an exit status of 0 unless an invalid
 option is encountered, one of the names is not a valid shell
 variable name, or -f is supplied with a name that is not a func-
 tion.

 fc [-e ename] [-nlr] [first] [last]
 fc -s [pat=rep] [cmd]
 Fix Command. In the first form, a range of commands from first
 to last is selected from the history list. First and last may
 be specified as a string (to locate the last command beginning
 with that string) or as a number (an index into the history
 list, where a negative number is used as an offset from the cur-
 rent command number). If last is not specified it is set to the
 current command for listing (so that ``fc -l -10'' prints the
 last 10 commands) and to first otherwise. If first is not spec-
 ified it is set to the previous command for editing and -16 for

2024/05/30 18:18 75/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 listing.

 The -n option suppresses the command numbers when listing. The
 -r option reverses the order of the commands. If the -l option
 is given, the commands are listed on standard output. Other-
 wise, the editor given by ename is invoked on a file containing
 those commands. If ename is not given, the value of the FCEDIT
 variable is used, and the value of EDITOR if FCEDIT is not set.
 If neither variable is set, vi is used. When editing is com-
 plete, the edited commands are echoed and executed.

 In the second form, command is re-executed after each instance
 of pat is replaced by rep. A useful alias to use with this is
 ``r="fc -s"'', so that typing ``r cc'' runs the last command
 beginning with ``cc'' and typing ``r'' re-executes the last com-
 mand.

 If the first form is used, the return value is 0 unless an
 invalid option is encountered or first or last specify history
 lines out of range. If the -e option is supplied, the return
 value is the value of the last command executed or failure if an
 error occurs with the temporary file of commands. If the second
 form is used, the return status is that of the command re-exe-
 cuted, unless cmd does not specify a valid history line, in
 which case fc returns failure.

 fg [jobspec]
 Resume jobspec in the foreground, and make it the current job.
 If jobspec is not present, the shell's notion of the current job
 is used. The return value is that of the command placed into
 the foreground, or failure if run when job control is disabled
 or, when run with job control enabled, if jobspec does not spec-
 ify a valid job or jobspec specifies a job that was started
 without job control.

 getopts optstring name [args]
 getopts is used by shell procedures to parse positional parame-
 ters. optstring contains the option characters to be recog-
 nized; if a character is followed by a colon, the option is
 expected to have an argument, which should be separated from it
 by white space. The colon and question mark characters may not
 be used as option characters. Each time it is invoked, getopts
 places the next option in the shell variable name, initializing
 name if it does not exist, and the index of the next argument to
 be processed into the variable OPTIND. OPTIND is initialized to
 1 each time the shell or a shell script is invoked. When an
 option requires an argument, getopts places that argument into
 the variable OPTARG. The shell does not reset OPTIND automati-
 cally; it must be manually reset between multiple calls to
 getopts within the same shell invocation if a new set of parame-

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 ters is to be used.

 When the end of options is encountered, getopts exits with a
 return value greater than zero. OPTIND is set to the index of
 the first non-option argument, and name is set to ?.

 getopts normally parses the positional parameters, but if more
 arguments are given in args, getopts parses those instead.

 getopts can report errors in two ways. If the first character
 of optstring is a colon, silent error reporting is used. In
 normal operation diagnostic messages are printed when invalid
 options or missing option arguments are encountered. If the
 variable OPTERR is set to 0, no error messages will be dis-
 played, even if the first character of optstring is not a colon.

 If an invalid option is seen, getopts places ? into name and, if
 not silent, prints an error message and unsets OPTARG. If
 getopts is silent, the option character found is placed in
 OPTARG and no diagnostic message is printed.

 If a required argument is not found, and getopts is not silent,
 a question mark (?) is placed in name, OPTARG is unset, and a
 diagnostic message is printed. If getopts is silent, then a
 colon (:) is placed in name and OPTARG is set to the option
 character found.

 getopts returns true if an option, specified or unspecified, is
 found. It returns false if the end of options is encountered or
 an error occurs.

 hash [-lr] [-p filename] [-dt] [name]
 For each name, the full file name of the command is determined
 by searching the directories in $PATH and remembered. If the -p
 option is supplied, no path search is performed, and filename is
 used as the full file name of the command. The -r option causes
 the shell to forget all remembered locations. The -d option
 causes the shell to forget the remembered location of each name.
 If the -t option is supplied, the full pathname to which each
 name corresponds is printed. If multiple name arguments are
 supplied with -t, the name is printed before the hashed full
 pathname. The -l option causes output to be displayed in a for-
 mat that may be reused as input. If no arguments are given, or
 if only -l is supplied, information about remembered commands is
 printed. The return status is true unless a name is not found
 or an invalid option is supplied.

 help [-s] [pattern]
 Display helpful information about builtin commands. If pattern
 is specified, help gives detailed help on all commands matching

2024/05/30 18:18 77/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 pattern; otherwise help for all the builtins and shell control
 structures is printed. The -s option restricts the information
 displayed to a short usage synopsis. The return status is 0
 unless no command matches pattern.

 history [n]
 history -c
 history -d offset
 history -anrw [filename]
 history -p arg [arg ...]
 history -s arg [arg ...]
 With no options, display the command history list with line num-
 bers. Lines listed with a * have been modified. An argument of
 n lists only the last n lines. If the shell variable HISTTIME-
 FORMAT is set and not null, it is used as a format string for
 strftime(3) to display the time stamp associated with each dis-
 played history entry. No intervening blank is printed between
 the formatted time stamp and the history line. If filename is
 supplied, it is used as the name of the history file; if not,
 the value of HISTFILE is used. Options, if supplied, have the
 following meanings:
 -c Clear the history list by deleting all the entries.
 -d offset
 Delete the history entry at position offset.
 -a Append the ``new'' history lines (history lines entered
 since the beginning of the current bash session) to the
 history file.
 -n Read the history lines not already read from the history
 file into the current history list. These are lines
 appended to the history file since the beginning of the
 current bash session.
 -r Read the contents of the history file and use them as the
 current history.
 -w Write the current history to the history file, overwrit-
 ing the history file's contents.
 -p Perform history substitution on the following args and
 display the result on the standard output. Does not
 store the results in the history list. Each arg must be
 quoted to disable normal history expansion.
 -s Store the args in the history list as a single entry.
 The last command in the history list is removed before
 the args are added.

 If the HISTTIMEFORMAT is set, the time stamp information associ-
 ated with each history entry is written to the history file.
 The return value is 0 unless an invalid option is encountered,
 an error occurs while reading or writing the history file, an
 invalid offset is supplied as an argument to -d, or the history
 expansion supplied as an argument to -p fails.

 jobs [-lnprs] [jobspec ...]

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 jobs -x command [args ...]
 The first form lists the active jobs. The options have the fol-
 lowing meanings:
 -l List process IDs in addition to the normal information.
 -p List only the process ID of the job's process group
 leader.
 -n Display information only about jobs that have changed
 status since the user was last notified of their status.
 -r Restrict output to running jobs.
 -s Restrict output to stopped jobs.

 If jobspec is given, output is restricted to information about
 that job. The return status is 0 unless an invalid option is
 encountered or an invalid jobspec is supplied.

 If the -x option is supplied, jobs replaces any jobspec found in
 command or args with the corresponding process group ID, and
 executes command passing it args, returning its exit status.

 kill [-s sigspec | -n signum | -sigspec] [pid | jobspec] ...
 kill -l [sigspec | exit_status]
 Send the signal named by sigspec or signum to the processes
 named by pid or jobspec. sigspec is either a case-insensitive
 signal name such as SIGKILL (with or without the SIG prefix) or
 a signal number; signum is a signal number. If sigspec is not
 present, then SIGTERM is assumed. An argument of -l lists the
 signal names. If any arguments are supplied when -l is given,
 the names of the signals corresponding to the arguments are
 listed, and the return status is 0. The exit_status argument to
 -l is a number specifying either a signal number or the exit
 status of a process terminated by a signal. kill returns true
 if at least one signal was successfully sent, or false if an
 error occurs or an invalid option is encountered.

 let arg [arg ...]
 Each arg is an arithmetic expression to be evaluated (see ARITH-
 METIC EVALUATION). If the last arg evaluates to 0, let returns
 1; 0 is returned otherwise.

 local [option] [name[=value] ...]
 For each argument, a local variable named name is created, and
 assigned value. The option can be any of the options accepted
 by declare. When local is used within a function, it causes the
 variable name to have a visible scope restricted to that func-
 tion and its children. With no operands, local writes a list of
 local variables to the standard output. It is an error to use
 local when not within a function. The return status is 0 unless
 local is used outside a function, an invalid name is supplied,
 or name is a readonly variable.

2024/05/30 18:18 79/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 logout Exit a login shell.

 popd [-n] [+n] [-n]
 Removes entries from the directory stack. With no arguments,
 removes the top directory from the stack, and performs a cd to
 the new top directory. Arguments, if supplied, have the follow-
 ing meanings:
 +n Removes the nth entry counting from the left of the list
 shown by dirs, starting with zero. For example: ``popd
 +0'' removes the first directory, ``popd +1'' the second.
 -n Removes the nth entry counting from the right of the list
 shown by dirs, starting with zero. For example: ``popd
 -0'' removes the last directory, ``popd -1'' the next to
 last.
 -n Suppresses the normal change of directory when removing
 directories from the stack, so that only the stack is
 manipulated.

 If the popd command is successful, a dirs is performed as well,
 and the return status is 0. popd returns false if an invalid
 option is encountered, the directory stack is empty, a non-exis-
 tent directory stack entry is specified, or the directory change
 fails.

 printf [-v var] format [arguments]
 Write the formatted arguments to the standard output under the
 control of the format. The format is a character string which
 contains three types of objects: plain characters, which are
 simply copied to standard output, character escape sequences,
 which are converted and copied to the standard output, and for-
 mat specifications, each of which causes printing of the next
 successive argument. In addition to the standard printf(1) for-
 mats, %b causes printf to expand backslash escape sequences in
 the corresponding argument (except that \c terminates output,
 backslashes in \', \", and \? are not removed, and octal escapes
 beginning with \0 may contain up to four digits), and %q causes
 printf to output the corresponding argument in a format that can
 be reused as shell input.

 The -v option causes the output to be assigned to the variable
 var rather than being printed to the standard output.

 The format is reused as necessary to consume all of the argu-
 ments. If the format requires more arguments than are supplied,
 the extra format specifications behave as if a zero value or
 null string, as appropriate, had been supplied. The return
 value is zero on success, non-zero on failure.

 pushd [-n] [dir]
 pushd [-n] [+n] [-n]

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 Adds a directory to the top of the directory stack, or rotates
 the stack, making the new top of the stack the current working
 directory. With no arguments, exchanges the top two directories
 and returns 0, unless the directory stack is empty. Arguments,
 if supplied, have the following meanings:
 +n Rotates the stack so that the nth directory (counting
 from the left of the list shown by dirs, starting with
 zero) is at the top.
 -n Rotates the stack so that the nth directory (counting
 from the right of the list shown by dirs, starting with
 zero) is at the top.
 -n Suppresses the normal change of directory when adding
 directories to the stack, so that only the stack is
 manipulated.
 dir Adds dir to the directory stack at the top, making it the
 new current working directory.

 If the pushd command is successful, a dirs is performed as well.
 If the first form is used, pushd returns 0 unless the cd to dir
 fails. With the second form, pushd returns 0 unless the direc-
 tory stack is empty, a non-existent directory stack element is
 specified, or the directory change to the specified new current
 directory fails.

 pwd [-LP]
 Print the absolute pathname of the current working directory.
 The pathname printed contains no symbolic links if the -P option
 is supplied or the -o physical option to the set builtin command
 is enabled. If the -L option is used, the pathname printed may
 contain symbolic links. The return status is 0 unless an error
 occurs while reading the name of the current directory or an
 invalid option is supplied.

 read [-ers] [-u fd] [-t timeout] [-a aname] [-p prompt] [-n nchars] [-d
 delim] [name ...]
 One line is read from the standard input, or from the file
 descriptor fd supplied as an argument to the -u option, and the
 first word is assigned to the first name, the second word to the
 second name, and so on, with leftover words and their interven-
 ing separators assigned to the last name. If there are fewer
 words read from the input stream than names, the remaining names
 are assigned empty values. The characters in IFS are used to
 split the line into words. The backslash character (\) may be
 used to remove any special meaning for the next character read
 and for line continuation. Options, if supplied, have the fol-
 lowing meanings:
 -a aname
 The words are assigned to sequential indices of the array
 variable aname, starting at 0. aname is unset before any
 new values are assigned. Other name arguments are
 ignored.

2024/05/30 18:18 81/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 -d delim
 The first character of delim is used to terminate the
 input line, rather than newline.
 -e If the standard input is coming from a terminal, readline
 (see READLINE above) is used to obtain the line.
 -n nchars
 read returns after reading nchars characters rather than
 waiting for a complete line of input.
 -p prompt
 Display prompt on standard error, without a trailing new-
 line, before attempting to read any input. The prompt is
 displayed only if input is coming from a terminal.
 -r Backslash does not act as an escape character. The back-
 slash is considered to be part of the line. In particu-
 lar, a backslash-newline pair may not be used as a line
 continuation.
 -s Silent mode. If input is coming from a terminal, charac-
 ters are not echoed.
 -t timeout
 Cause read to time out and return failure if a complete
 line of input is not read within timeout seconds. This
 option has no effect if read is not reading input from
 the terminal or a pipe.
 -u fd Read input from file descriptor fd.

 If no names are supplied, the line read is assigned to the vari-
 able REPLY. The return code is zero, unless end-of-file is
 encountered, read times out, or an invalid file descriptor is
 supplied as the argument to -u.

 readonly [-apf] [name[=word] ...]
 The given names are marked readonly; the values of these names
 may not be changed by subsequent assignment. If the -f option
 is supplied, the functions corresponding to the names are so
 marked. The -a option restricts the variables to arrays. If no
 name arguments are given, or if the -p option is supplied, a
 list of all readonly names is printed. The -p option causes
 output to be displayed in a format that may be reused as input.
 If a variable name is followed by =word, the value of the vari-
 able is set to word. The return status is 0 unless an invalid
 option is encountered, one of the names is not a valid shell
 variable name, or -f is supplied with a name that is not a func-
 tion.

 return [n]
 Causes a function to exit with the return value specified by n.
 If n is omitted, the return status is that of the last command
 executed in the function body. If used outside a function, but
 during execution of a script by the . (source) command, it
 causes the shell to stop executing that script and return either
 n or the exit status of the last command executed within the

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 script as the exit status of the script. If used outside a
 function and not during execution of a script by ., the return
 status is false. Any command associated with the RETURN trap is
 executed before execution resumes after the function or script.

 set [--abefhkmnptuvxBCHP] [-o option] [arg ...]
 Without options, the name and value of each shell variable are
 displayed in a format that can be reused as input for setting or
 resetting the currently-set variables. Read-only variables can-
 not be reset. In posix mode, only shell variables are listed.
 The output is sorted according to the current locale. When
 options are specified, they set or unset shell attributes. Any
 arguments remaining after the options are processed are treated
 as values for the positional parameters and are assigned, in
 order, to $1, $2, ... $n. Options, if specified, have the fol-
 lowing meanings:
 -a Automatically mark variables and functions which are
 modified or created for export to the environment of
 subsequent commands.
 -b Report the status of terminated background jobs immedi-
 ately, rather than before the next primary prompt. This
 is effective only when job control is enabled.
 -e Exit immediately if a simple command (see SHELL GRAMMAR
 above) exits with a non-zero status. The shell does not
 exit if the command that fails is part of the command
 list immediately following a while or until keyword,
 part of the test in an if statement, part of a && or ||
 list, or if the command's return value is being inverted
 via !. A trap on ERR, if set, is executed before the
 shell exits.
 -f Disable pathname expansion.
 -h Remember the location of commands as they are looked up
 for execution. This is enabled by default.
 -k All arguments in the form of assignment statements are
 placed in the environment for a command, not just those
 that precede the command name.
 -m Monitor mode. Job control is enabled. This option is
 on by default for interactive shells on systems that
 support it (see JOB CONTROL above). Background pro-
 cesses run in a separate process group and a line con-
 taining their exit status is printed upon their comple-
 tion.
 -n Read commands but do not execute them. This may be used
 to check a shell script for syntax errors. This is
 ignored by interactive shells.
 -o option-name
 The option-name can be one of the following:
 allexport
 Same as -a.
 braceexpand
 Same as -B.

2024/05/30 18:18 83/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 emacs Use an emacs-style command line editing inter-
 face. This is enabled by default when the shell
 is interactive, unless the shell is started with
 the --noediting option.
 errtrace
 Same as -E.
 functrace
 Same as -T.
 errexit Same as -e.
 hashall Same as -h.
 histexpand
 Same as -H.
 history Enable command history, as described above under
 HISTORY. This option is on by default in inter-
 active shells.
 ignoreeof
 The effect is as if the shell command
 ``IGNOREEOF=10'' had been executed (see Shell
 Variables above).
 keyword Same as -k.
 monitor Same as -m.
 noclobber
 Same as -C.
 noexec Same as -n.
 noglob Same as -f. nolog Currently ignored.
 notify Same as -b.
 nounset Same as -u.
 onecmd Same as -t.
 physical
 Same as -P.
 pipefail
 If set, the return value of a pipeline is the
 value of the last (rightmost) command to exit
 with a non-zero status, or zero if all commands
 in the pipeline exit successfully. This option
 is disabled by default.
 posix Change the behavior of bash where the default
 operation differs from the POSIX standard to
 match the standard (posix mode).
 privileged
 Same as -p.
 verbose Same as -v.
 vi Use a vi-style command line editing interface.
 xtrace Same as -x.
 If -o is supplied with no option-name, the values of the
 current options are printed. If +o is supplied with no
 option-name, a series of set commands to recreate the
 current option settings is displayed on the standard
 output.
 -p Turn on privileged mode. In this mode, the $ENV and
 $BASH_ENV files are not processed, shell functions are

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 not inherited from the environment, and the SHELLOPTS
 variable, if it appears in the environment, is ignored.
 If the shell is started with the effective user (group)
 id not equal to the real user (group) id, and the -p
 option is not supplied, these actions are taken and the
 effective user id is set to the real user id. If the -p
 option is supplied at startup, the effective user id is
 not reset. Turning this option off causes the effective
 user and group ids to be set to the real user and group
 ids.
 -t Exit after reading and executing one command.
 -u Treat unset variables as an error when performing param-
 eter expansion. If expansion is attempted on an unset
 variable, the shell prints an error message, and, if not
 interactive, exits with a non-zero status.
 -v Print shell input lines as they are read.
 -x After expanding each simple command, for command, case
 command, select command, or arithmetic for command, dis-
 play the expanded value of PS4, followed by the command
 and its expanded arguments or associated word list.
 -B The shell performs brace expansion (see Brace Expansion
 above). This is on by default.
 -C If set, bash does not overwrite an existing file with
 the >, >&, and <> redirection operators. This may be
 overridden when creating output files by using the redi-
 rection operator >| instead of >.
 -E If set, any trap on ERR is inherited by shell functions,
 command substitutions, and commands executed in a sub-
 shell environment. The ERR trap is normally not inher-
 ited in such cases.
 -H Enable ! style history substitution. This option is on
 by default when the shell is interactive.
 -P If set, the shell does not follow symbolic links when
 executing commands such as cd that change the current
 working directory. It uses the physical directory
 structure instead. By default, bash follows the logical
 chain of directories when performing commands which
 change the current directory.
 -T If set, any traps on DEBUG and RETURN are inherited by
 shell functions, command substitutions, and commands
 executed in a subshell environment. The DEBUG and
 RETURN traps are normally not inherited in such cases.
 -- If no arguments follow this option, then the positional
 parameters are unset. Otherwise, the positional parame-
 ters are set to the args, even if some of them begin
 with a -.
 - Signal the end of options, cause all remaining args to
 be assigned to the positional parameters. The -x and -v
 options are turned off. If there are no args, the posi-
 tional parameters remain unchanged.

2024/05/30 18:18 85/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 The options are off by default unless otherwise noted. Using +
 rather than - causes these options to be turned off. The
 options can also be specified as arguments to an invocation of
 the shell. The current set of options may be found in $-. The
 return status is always true unless an invalid option is encoun-
 tered.

 shift [n]
 The positional parameters from n+1 ... are renamed to $1
 Parameters represented by the numbers $# down to $#-n+1 are
 unset. n must be a non-negative number less than or equal to
 $#. If n is 0, no parameters are changed. If n is not given,
 it is assumed to be 1. If n is greater than $#, the positional
 parameters are not changed. The return status is greater than
 zero if n is greater than $# or less than zero; otherwise 0.

 shopt [-pqsu] [-o] [optname ...]
 Toggle the values of variables controlling optional shell behav-
 ior. With no options, or with the -p option, a list of all set-
 table options is displayed, with an indication of whether or not
 each is set. The -p option causes output to be displayed in a
 form that may be reused as input. Other options have the fol-
 lowing meanings:
 -s Enable (set) each optname.
 -u Disable (unset) each optname.
 -q Suppresses normal output (quiet mode); the return status
 indicates whether the optname is set or unset. If multi-
 ple optname arguments are given with -q, the return sta-
 tus is zero if all optnames are enabled; non-zero other-
 wise.
 -o Restricts the values of optname to be those defined for
 the -o option to the set builtin.

 If either -s or -u is used with no optname arguments, the dis-
 play is limited to those options which are set or unset, respec-
 tively. Unless otherwise noted, the shopt options are disabled
 (unset) by default.

 The return status when listing options is zero if all optnames
 are enabled, non-zero otherwise. When setting or unsetting
 options, the return status is zero unless an optname is not a
 valid shell option.

 The list of shopt options is:

 cdable_vars
 If set, an argument to the cd builtin command that is
 not a directory is assumed to be the name of a variable
 whose value is the directory to change to.
 cdspell If set, minor errors in the spelling of a directory com-

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 ponent in a cd command will be corrected. The errors
 checked for are transposed characters, a missing charac-
 ter, and one character too many. If a correction is
 found, the corrected file name is printed, and the com-
 mand proceeds. This option is only used by interactive
 shells.
 checkhash
 If set, bash checks that a command found in the hash ta-
 ble exists before trying to execute it. If a hashed
 command no longer exists, a normal path search is per-
 formed.
 checkwinsize
 If set, bash checks the window size after each command
 and, if necessary, updates the values of LINES and COL-
 UMNS.
 cmdhist If set, bash attempts to save all lines of a multiple-
 line command in the same history entry. This allows
 easy re-editing of multi-line commands.
 dotglob If set, bash includes filenames beginning with a `.' in
 the results of pathname expansion.
 execfail
 If set, a non-interactive shell will not exit if it can-
 not execute the file specified as an argument to the
 exec builtin command. An interactive shell does not
 exit if exec fails.
 expand_aliases
 If set, aliases are expanded as described above under
 ALIASES. This option is enabled by default for interac-
 tive shells.
 extdebug
 If set, behavior intended for use by debuggers is
 enabled:
 1. The -F option to the declare builtin displays the
 source file name and line number corresponding to
 each function name supplied as an argument.
 2. If the command run by the DEBUG trap returns a
 non-zero value, the next command is skipped and
 not executed.
 3. If the command run by the DEBUG trap returns a
 value of 2, and the shell is executing in a sub-
 routine (a shell function or a shell script exe-
 cuted by the . or source builtins), a call to
 return is simulated.
 4. BASH_ARGC and BASH_ARGV are updated as described
 in their descriptions above.
 5. Function tracing is enabled: command substitu-
 tion, shell functions, and subshells invoked with
 (command) inherit the DEBUG and RETURN traps.
 6. Error tracing is enabled: command substitution,
 shell functions, and subshells invoked with (
 command) inherit the ERROR trap.

2024/05/30 18:18 87/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 extglob If set, the extended pattern matching features described
 above under Pathname Expansion are enabled.
 extquote
 If set, $'string' and $"string" quoting is performed
 within ${parameter} expansions enclosed in double
 quotes. This option is enabled by default.
 failglob
 If set, patterns which fail to match filenames during
 pathname expansion result in an expansion error.
 force_fignore
 If set, the suffixes specified by the FIGNORE shell
 variable cause words to be ignored when performing word
 completion even if the ignored words are the only possi-
 ble completions. See SHELL VARIABLES above for a
 description of FIGNORE. This option is enabled by
 default.
 gnu_errfmt
 If set, shell error messages are written in the standard
 GNU error message format.
 histappend
 If set, the history list is appended to the file named
 by the value of the HISTFILE variable when the shell
 exits, rather than overwriting the file.
 histreedit
 If set, and readline is being used, a user is given the
 opportunity to re-edit a failed history substitution.
 histverify
 If set, and readline is being used, the results of his-
 tory substitution are not immediately passed to the
 shell parser. Instead, the resulting line is loaded
 into the readline editing buffer, allowing further modi-
 fication.
 hostcomplete
 If set, and readline is being used, bash will attempt to
 perform hostname completion when a word containing a @
 is being completed (see Completing under READLINE
 above). This is enabled by default.
 huponexit
 If set, bash will send SIGHUP to all jobs when an inter-
 active login shell exits.
 interactive_comments
 If set, allow a word beginning with # to cause that word
 and all remaining characters on that line to be ignored
 in an interactive shell (see COMMENTS above). This
 option is enabled by default.
 lithist If set, and the cmdhist option is enabled, multi-line
 commands are saved to the history with embedded newlines
 rather than using semicolon separators where possible.
 login_shell
 The shell sets this option if it is started as a login
 shell (see INVOCATION above). The value may not be

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 changed.
 mailwarn
 If set, and a file that bash is checking for mail has
 been accessed since the last time it was checked, the
 message ``The mail in mailfile has been read'' is dis-
 played.
 no_empty_cmd_completion
 If set, and readline is being used, bash will not
 attempt to search the PATH for possible completions when
 completion is attempted on an empty line.
 nocaseglob
 If set, bash matches filenames in a case-insensitive
 fashion when performing pathname expansion (see Pathname
 Expansion above).
 nocasematch
 If set, bash matches patterns in a case-insensitive
 fashion when performing matching while executing case or
 [[conditional commands.
 nullglob
 If set, bash allows patterns which match no files (see
 Pathname Expansion above) to expand to a null string,
 rather than themselves.
 progcomp
 If set, the programmable completion facilities (see Pro-
 grammable Completion above) are enabled. This option is
 enabled by default.
 promptvars
 If set, prompt strings undergo parameter expansion, com-
 mand substitution, arithmetic expansion, and quote
 removal after being expanded as described in PROMPTING
 above. This option is enabled by default.
 restricted_shell
 The shell sets this option if it is started in
 restricted mode (see RESTRICTED SHELL below). The value
 may not be changed. This is not reset when the startup
 files are executed, allowing the startup files to dis-
 cover whether or not a shell is restricted.
 shift_verbose
 If set, the shift builtin prints an error message when
 the shift count exceeds the number of positional parame-
 ters.
 sourcepath
 If set, the source (.) builtin uses the value of PATH to
 find the directory containing the file supplied as an
 argument. This option is enabled by default.
 xpg_echo
 If set, the echo builtin expands backslash-escape
 sequences by default.
 suspend [-f]
 Suspend the execution of this shell until it receives a SIGCONT
 signal. The -f option says not to complain if this is a login

2024/05/30 18:18 89/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 shell; just suspend anyway. The return status is 0 unless the
 shell is a login shell and -f is not supplied, or if job control
 is not enabled.
 test expr
 [expr]
 Return a status of 0 or 1 depending on the evaluation of the
 conditional expression expr. Each operator and operand must be
 a separate argument. Expressions are composed of the primaries
 described above under CONDITIONAL EXPRESSIONS. test does not
 accept any options, nor does it accept and ignore an argument of
 -- as signifying the end of options.

 Expressions may be combined using the following operators,
 listed in decreasing order of precedence.
 ! expr True if expr is false.
 (expr)
 Returns the value of expr. This may be used to override
 the normal precedence of operators.
 expr1 -a expr2
 True if both expr1 and expr2 are true.
 expr1 -o expr2
 True if either expr1 or expr2 is true.

 test and [evaluate conditional expressions using a set of rules
 based on the number of arguments.

 0 arguments
 The expression is false.
 1 argument
 The expression is true if and only if the argument is not
 null.
 2 arguments
 If the first argument is !, the expression is true if and
 only if the second argument is null. If the first argu-
 ment is one of the unary conditional operators listed
 above under CONDITIONAL EXPRESSIONS, the expression is
 true if the unary test is true. If the first argument is
 not a valid unary conditional operator, the expression is
 false.
 3 arguments
 If the second argument is one of the binary conditional
 operators listed above under CONDITIONAL EXPRESSIONS, the
 result of the expression is the result of the binary test
 using the first and third arguments as operands. If the
 first argument is !, the value is the negation of the
 two-argument test using the second and third arguments.
 If the first argument is exactly (and the third argument
 is exactly), the result is the one-argument test of the
 second argument. Otherwise, the expression is false.
 The -a and -o operators are considered binary operators
 in this case.

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 4 arguments
 If the first argument is !, the result is the negation of
 the three-argument expression composed of the remaining
 arguments. Otherwise, the expression is parsed and eval-
 uated according to precedence using the rules listed
 above.
 5 or more arguments
 The expression is parsed and evaluated according to
 precedence using the rules listed above.

 times Print the accumulated user and system times for the shell and
 for processes run from the shell. The return status is 0.

 trap [-lp] [[arg] sigspec ...]
 The command arg is to be read and executed when the shell
 receives signal(s) sigspec. If arg is absent (and there is a
 single sigspec) or -, each specified signal is reset to its
 original disposition (the value it had upon entrance to the
 shell). If arg is the null string the signal specified by each
 sigspec is ignored by the shell and by the commands it invokes.
 If arg is not present and -p has been supplied, then the trap
 commands associated with each sigspec are displayed. If no
 arguments are supplied or if only -p is given, trap prints the
 list of commands associated with each signal. The -l option
 causes the shell to print a list of signal names and their cor-
 responding numbers. Each sigspec is either a signal name
 defined in <signal.h>, or a signal number. Signal names are
 case insensitive and the SIG prefix is optional. If a sigspec
 is EXIT (0) the command arg is executed on exit from the shell.
 If a sigspec is DEBUG, the command arg is executed before every
 simple command, for command, case command, select command, every
 arithmetic for command, and before the first command executes in
 a shell function (see SHELL GRAMMAR above). Refer to the
 description of the extdebug option to the shopt builtin for
 details of its effect on the DEBUG trap. If a sigspec is ERR,
 the command arg is executed whenever a simple command has a
 non-zero exit status, subject to the following conditions. The
 ERR trap is not executed if the failed command is part of the
 command list immediately following a while or until keyword,
 part of the test in an if statement, part of a && or || list, or
 if the command's return value is being inverted via !. These
 are the same conditions obeyed by the errexit option. If a
 sigspec is RETURN, the command arg is executed each time a shell
 function or a script executed with the . or source builtins fin-
 ishes executing. Signals ignored upon entry to the shell cannot
 be trapped or reset. Trapped signals that are not being ignored
 are reset to their original values in a child process when it is
 created. The return status is false if any sigspec is invalid;
 otherwise trap returns true.

 type [-aftpP] name [name ...]

2024/05/30 18:18 91/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 With no options, indicate how each name would be interpreted if
 used as a command name. If the -t option is used, type prints a
 string which is one of alias, keyword, function, builtin, or
 file if name is an alias, shell reserved word, function,
 builtin, or disk file, respectively. If the name is not found,
 then nothing is printed, and an exit status of false is
 returned. If the -p option is used, type either returns the
 name of the disk file that would be executed if name were speci-
 fied as a command name, or nothing if ``type -t name'' would not
 return file. The -P option forces a PATH search for each name,
 even if ``type -t name'' would not return file. If a command is
 hashed, -p and -P print the hashed value, not necessarily the
 file that appears first in PATH. If the -a option is used, type
 prints all of the places that contain an executable named name.
 This includes aliases and functions, if and only if the -p
 option is not also used. The table of hashed commands is not
 consulted when using -a. The -f option suppresses shell func-
 tion lookup, as with the command builtin. type returns true if
 any of the arguments are found, false if none are found.

 ulimit [-SHacdefilmnpqrstuvx [limit]]
 Provides control over the resources available to the shell and
 to processes started by it, on systems that allow such control.
 The -H and -S options specify that the hard or soft limit is set
 for the given resource. A hard limit cannot be increased once
 it is set; a soft limit may be increased up to the value of the
 hard limit. If neither -H nor -S is specified, both the soft
 and hard limits are set. The value of limit can be a number in
 the unit specified for the resource or one of the special values
 hard, soft, or unlimited, which stand for the current hard
 limit, the current soft limit, and no limit, respectively. If
 limit is omitted, the current value of the soft limit of the
 resource is printed, unless the -H option is given. When more
 than one resource is specified, the limit name and unit are
 printed before the value. Other options are interpreted as fol-
 lows:
 -a All current limits are reported
 -c The maximum size of core files created
 -d The maximum size of a process's data segment
 -e The maximum scheduling priority ("nice")
 -f The maximum size of files written by the shell and its
 children
 -i The maximum number of pending signals
 -l The maximum size that may be locked into memory
 -m The maximum resident set size
 -n The maximum number of open file descriptors (most systems
 do not allow this value to be set)
 -p The pipe size in 512-byte blocks (this may not be set)
 -q The maximum number of bytes in POSIX message queues
 -r The maximum real-time scheduling priority
 -s The maximum stack size

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 -t The maximum amount of cpu time in seconds
 -u The maximum number of processes available to a single
 user
 -v The maximum amount of virtual memory available to the
 shell
 -x The maximum number of file locks

 If limit is given, it is the new value of the specified resource
 (the -a option is display only). If no option is given, then -f
 is assumed. Values are in 1024-byte increments, except for -t,
 which is in seconds, -p, which is in units of 512-byte blocks,
 and -n and -u, which are unscaled values. The return status is
 0 unless an invalid option or argument is supplied, or an error
 occurs while setting a new limit.

 umask [-p] [-S] [mode]
 The user file-creation mask is set to mode. If mode begins with
 a digit, it is interpreted as an octal number; otherwise it is
 interpreted as a symbolic mode mask similar to that accepted by
 chmod(1). If mode is omitted, the current value of the mask is
 printed. The -S option causes the mask to be printed in sym-
 bolic form; the default output is an octal number. If the -p
 option is supplied, and mode is omitted, the output is in a form
 that may be reused as input. The return status is 0 if the mode
 was successfully changed or if no mode argument was supplied,
 and false otherwise.

 unalias [-a] [name ...]
 Remove each name from the list of defined aliases. If -a is
 supplied, all alias definitions are removed. The return value
 is true unless a supplied name is not a defined alias.

 unset [-fv] [name ...]
 For each name, remove the corresponding variable or function.
 If no options are supplied, or the -v option is given, each name
 refers to a shell variable. Read-only variables may not be
 unset. If -f is specified, each name refers to a shell func-
 tion, and the function definition is removed. Each unset vari-
 able or function is removed from the environment passed to sub-
 sequent commands. If any of RANDOM, SECONDS, LINENO, HISTCMD,
 FUNCNAME, GROUPS, or DIRSTACK are unset, they lose their special
 properties, even if they are subsequently reset. The exit sta-
 tus is true unless a name is readonly.

 wait [n ...]
 Wait for each specified process and return its termination sta-
 tus. Each n may be a process ID or a job specification; if a
 job spec is given, all processes in that job's pipeline are
 waited for. If n is not given, all currently active child pro-
 cesses are waited for, and the return status is zero. If n
 specifies a non-existent process or job, the return status is

2024/05/30 18:18 93/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 127. Otherwise, the return status is the exit status of the
 last process or job waited for.

RESTRICTED SHELL

 If bash is started with the name rbash, or the -r option is supplied at
 invocation, the shell becomes restricted. A restricted shell is used
 to set up an environment more controlled than the standard shell. It
 behaves identically to bash with the exception that the following are
 disallowed or not performed:

 o changing directories with cd

 o setting or unsetting the values of SHELL, PATH, ENV, or BASH_ENV

 o specifying command names containing /

 o specifying a file name containing a / as an argument to the .
 builtin command

 o Specifying a filename containing a slash as an argument to the
 -p option to the hash builtin command

 o importing function definitions from the shell environment at
 startup

 o parsing the value of SHELLOPTS from the shell environment at
 startup

 o redirecting output using the >, >|, <>, >&, &>, and >> redirect-
 ion operators

 o using the exec builtin command to replace the shell with another
 command

 o adding or deleting builtin commands with the -f and -d options
 to the enable builtin command

 o Using the enable builtin command to enable disabled shell
 builtins

 o specifying the -p option to the command builtin command

 o turning off restricted mode with set +r or set +o restricted.

 These restrictions are enforced after any startup files are read.

 When a command that is found to be a shell script is executed (see COM-
 MAND EXECUTION above), rbash turns off any restrictions in the shell

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

 spawned to execute the script.

SEE ALSO

 Bash Reference Manual, Brian Fox and Chet Ramey
 The Gnu Readline Library, Brian Fox and Chet Ramey
 The Gnu History Library, Brian Fox and Chet Ramey
 Portable Operating System Interface (POSIX) Part 2: Shell and Utili-
 ties, IEEE
 sh(1), ksh(1), csh(1)
 emacs(1), vi(1)
 readline(3)

FILES

 /bin/bash
 The bash executable
 /etc/profile
 The systemwide initialization file, executed for login shells
 ~/.bash_profile
 The personal initialization file, executed for login shells
 ~/.bashrc
 The individual per-interactive-shell startup file
 ~/.bash_logout
 The individual login shell cleanup file, executed when a login
 shell exits
 ~/.inputrc
 Individual readline initialization file

AUTHORS

 Brian Fox, Free Software Foundation
 bfox@gnu.org

 Chet Ramey, Case Western Reserve University
 chet@po.cwru.edu

BUG REPORTS

 If you find a bug in bash, you should report it. But first, you should
 make sure that it really is a bug, and that it appears in the latest
 version of bash. The latest version is always available from
 ftp://ftp.gnu.org/pub/bash/.

 Once you have determined that a bug actually exists, use the bashbug
 command to submit a bug report. If you have a fix, you are encouraged
 to mail that as well! Suggestions and `philosophical' bug reports may
 be mailed to bug-bash@gnu.org or posted to the Usenet newsgroup
 gnu.bash.bug.

2024/05/30 18:18 95/96 bash

KvFG Wiki - https://www.kvfg.net/wiki/

 ALL bug reports should include:

 The version number of bash
 The hardware and operating system
 The compiler used to compile
 A description of the bug behaviour
 A short script or `recipe' which exercises the bug

 bashbug inserts the first three items automatically into the template
 it provides for filing a bug report.

 Comments and bug reports concerning this manual page should be directed
 to chet@po.cwru.edu.

BUGS

 It's too big and too slow.

 There are some subtle differences between bash and traditional versions
 of sh, mostly because of the POSIX specification.

 Aliases are confusing in some uses.

 Shell builtin commands and functions are not stoppable/restartable.

 Compound commands and command sequences of the form `a ; b ; c' are not
 handled gracefully when process suspension is attempted. When a
 process is stopped, the shell immediately executes the next command in
 the sequence. It suffices to place the sequence of commands between
 parentheses to force it into a subshell, which may be stopped as a
 unit.

 Commands inside of $(...) command substitution are not parsed until
 substitution is attempted. This will delay error reporting until some
 time after the command is entered. For example, unmatched parentheses,
 even inside shell comments, will result in error messages while the
 construct is being read.

 Array variables may not (yet) be exported.

GNU Bash-3.2 2006 September 28 bash(1)

From:
https://www.kvfg.net/wiki/ - KvFG Wiki

Permanent link:
https://www.kvfg.net/wiki/doku.php?id=lpic:bash

Last update: 2009/02/12 16:29

https://www.kvfg.net/wiki/
https://www.kvfg.net/wiki/doku.php?id=lpic:bash

Last update: 2009/02/12 16:29 lpic:bash https://www.kvfg.net/wiki/doku.php?id=lpic:bash

https://www.kvfg.net/wiki/ Printed on 2024/05/30 18:18

